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Recent successes in reinforcement learning (RL)

In RL, an agent learns by interacting with an environment.

RL holds great promise in the next era of artificial intelligence.



Background and problem formulation
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Markov decision processes
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Value function
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Value/Q-function function of policy 7:

oo
Z’ytm‘so:s]
Z'yrt‘so—s ao—a]

VseS: V7(s):=

V(s,a) eSxA: Q7

® v €[0,1) is the discount factor; ﬁ is effective horizon
® Expectation is w.r.t. the sampled trajectory under 7
® Given initial state distribution p, let V™ (p) = E5,V™(s).



Searching for the optimal policy

Reinforcement — Dynamic Programming
Learning r and Optimal Control
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Goal: find the optimal policy 7* that maximize V™ (p)

e optimal value / Q function: V*:= V™ Q* := Q™

e optimal policy 7*(s) = argmax,c 4 Q*(s,a)



Data source in RL

> Exploration
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Data source in RL

> Exploration

Paatalirng - wabeirng -

offline RL online RL generative model

Our focus: offline RL without exploration |




Offline RL / Batch RL

® Sometimes we can not explore or generate new data

® But we have already stored tons of historical data
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Offline RL / Batch RL

® Sometimes we can not explore or generate new data
® But we have already stored tons of historical data

ik THE TN 1L [N ALTTOSCPO8S VERIGLES

e

medical records data of self-driving clicking times of ads

Can we learn a good policy based solely on historical data
without active exploration?




Model-based offline RL is nearly minimax optimal



A simplified model of history data from behavior policy
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A simplified model of history data from behavior policy

initial distribution behavior policy transition kermel
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A simplified model of history data from behavior policy

Goal of offline RL: given history data D := {(s;, a;, i, )},
find an e-optimal policy 7 obeying

V(p) = VT(p) < e

— in a sample-efficient manner
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Challenges of offline RL

Partial coverage of state-action space:
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Challenges of offline RL

Partial coverage of state-action space
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Distribution shift:

distribution(D) # target distribution under
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How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)

where d” (s, a) is the state-action occupation density of policy .
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How to quantify the distribution shift?

Single-policy concentrability coefficient (Rashidineiad et al.)

® captures distribution shift

® allows for partial coverage
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How to quantify the distribution shift? — a refinement

Single-policy clipped concentrability coefficient (Li et al., '22)

. min{d™ (s, a),1/S}
g = ma
clipped = TEX ™ (s,a)

>1/8

where d” (s, a) is the state-action occupation density of policy .
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How to quantify the distribution shift? — a refinement

Single-policy clipped concentrability coefficient (Li et al., '22)

. min{d™ (s, a),1/S}
g = ma
clipped = TEX ™ (s,a)

>1/8

where d” (s, a) is the state-action occupation density of policy .

® captures distribution shift
* allows for partial coverage

* *
clipped < ¢
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A “plug-in" model-based approach

— (Azar et al. '13, Agarwal et al. '19, Li et al. '20)

{  empirical MDP
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Planning (e.g., value iteration) based on the the empirical MDP P

Qs,a) « r(s.a) +9(P(|5,0), V), V(s) = maxQ(s,a).

Issue: poor value estimates under partial and poor coverage. |
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Pessimism in the face of uncertainty

Penalize value estimate of (s,a) pairs that were poorly visited

— (Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)

without

—
pessimism -._
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Pessimism in the face of uncertainty

Penalize value estimate of (s a) pairs that were poorly visited

(Jin et al. '20, Rashidinejad et al. '21, Xie et al. '21)
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Value iteration with lower confidence bound (VI-LCB):

Q(s,a) + max {r(s,a) —|—’y<]3(- | s,a),f/> — b(s,a; V) , 0},

uncertainty penalty

where V(s) = max, Q(s, a).
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A benchmark of prior arts
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A benchmark of prior arts
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A benchmark of prior arts
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Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany 0 <e< ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V*(p) = V7(p) <€

with high prob., with sample complexity at most

6 S élipped
(=)

17



Sample complexity of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

Forany 0 <e< ﬁ the policy 7 returned by VI-LCB using a
Bernstein-style penalty term achieves

V*(p) = V7(p) <€

with high prob., with sample complexity at most

6 S élipped
(=)

® depends on distribution shift (as reflected by C;, 4)

® improves upon prior results by allowing C:“pped =1/8.

e full e-range (no burn-in cost)
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Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

For any v € [2/3,1), 8 > 2, Cfji peq = 87/S, and 0 < e < 42(1 =5
there exists some MDP and batch dataset such that no algorithm
succeeds if the sample size is below

().

18



Minimax optimality of model-based offline RL

Theorem (Li, Shi, Chen, Chi, Wei’22)

For any v € [2/3,1), 8 > 2, Cfji peq = 87/S, and 0 < e < 42(1 =5
there exists some MDP and batch dataset such that no algorithm
succeeds if the sample size is below

0 ().

® verifies the minimax optimality of the pessimistic model-based
algorithm

18
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complexity

SC

Model-based RL is minimax optimal with no burn-in cost! J




Offline RL meets distributional robustness



Safety and robustness in RL

—(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment
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Safety and robustness in RL

—(Zhou et al., 2021; Panaganti and Kalathil, 2022; Yang et al., 2022;)

Training environment # Test environment

Can we learn optimal policies that are robust to model
perturbations from historical data?
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Distributionally robust MDP
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Uncertainty set of the nominal transition kernel P°:
U (P°)={P: KL(P| P°) <o}

Robust value/Q function of policy 7:
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The optimal robust policy 7* maximizes V™7 (p) J
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Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)
Robust Bellman’s optimality equation: the optimal robust

policy 7* and optimal robust value V*7 := V™7 satisfy

Q" (s,a) =r(s,a) +v  inf  (Pse, V™),
Psa€Ut(P2,)

V*9(s) = max Q@ (s,a)
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Distributionally robust Bellman's optimality equation

(lyengar. '05, Nilim and El Ghaoui. '05)

Robust Bellman’s optimality equation: the optimal robust
policy 7* and optimal robust value V*7 := V™7 satisfy

Q"7 (s,a) =r(s,a)+~  inf (P, V™),
P o€U” (P2,)

V*9(s) = max Q@ (s,a)

Solvable by robust value iteration:

Q(s,a) + r(s,a) +~ inf (Ps.a, V),
Ps o€l (P2,)

where V(s) = max, Q(s,a).

23



Distributionally robust offline RL

(s,a) ~ d°

S,
b’jltct 0 Nowminal Transition
arbitrary! kernel
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Distributionally robust offline RL

(s,a) ~ d°

b'im : Nowminal Transition
arbitrary! koermel

Goal of robust offline RL: given D := {(s;, a;,s;)}, from the
nominal environment PP, find an e-optimal robust policy 7 obeying

V5 (p) = V7 (p) <€

— in a sample-efficient manner

24



Prior art under full coverage
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Prior art under full coverage
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Questions: Can we improve the sample efficiency and
allow partial coverage?
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How to quantify the compounded distribution shift?
Robust single-policy concentrability coefficient

. min{d”*vp(s,a), %}
b = max -

(s,a,P)ES X AxU(P®) d°(s,a)
occupancy distribution of (7*,U(P?)) H

occupancy distribution of D

where d™" is the state-action occupation density of m under P.

v
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How to quantify the compounded distribution shift?
Robust single-policy concentrability coefficient

. min{d”*vp(s, a), %}
rob = max 5

(5,a,P)ES X AXU(P?) d°(s,a)
occupancy distribution of (m*,U(P°?))

occupancy distribution of D

HOO

where d™" is the state-action occupation density of m under P.

&

® captures distributional shift due
to behavior policy and historical dataset D
environment. S

® CF, < A under full coverage.




Distributionally robust value iteration with pessimism

Distributionally robust value iteration (DRVI) with LCB:

~

Q(s,a) + max{r(s,a)+~  inf PV — b(s,a; V) , 0},
’PEL{”(P;(L) %/—/
uncertainty penalty

where V(s) = max, Q(s, a).

Key innovation: design the penalty term to capture the variability
in robust RL:

inf PV - inf PV
Peus(Pe,) Peuc(Pe,)

No closed form w.r.t. Psf’yaflsso’a due to U (-)
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Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB
outputs an e-optimal policy with high prob., with sample

complexity at most
T
Prad =)o)’

where Px.  is the smallest positive state transition probability of
the nominal kernel visited by the optimal robust policy 7*.

28



Sample complexity of DRVI-LCB

Theorem (Shi and Chi’22)

For any uncertainty level ¢ > 0 and small enough ¢, DRVI-LCB
outputs an e-optimal policy with high prob., with sample

complexity at most
T
Prad =)o)’

where Px.  is the smallest positive state transition probability of
the nominal kernel visited by the optimal robust policy 7*.

® scales linearly with respect to S

® reflects the impact of distribution shift of offline dataset
(Cr) and also model shift level (o)

28



Minimax lower bound

Theorem (Shi and Chi’22)

1 1
Suppose that = > %, 8 >log (125), Crop > 8/S, 0 < log 11

S T)ios = there exists some MDP and batch dataset
1—v
such that no algorithm succeeds if the sample size is below
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min

and e <




Minimax lower bound

Theorem (Shi and Chi’22)

1 1
Suppose that = > %, 8 >log (125), Crop > 8/S, 0 < log 11

S T)ios = there exists some MDP and batch dataset
1—v
such that no algorithm succeeds if the sample size is below

5 SCr,
P*. ( 7)20-2 62 :

min

and e <

® the first lower bound for robust MDP with KL divergence

® Establishes the near minimax-optimality of DRVI-LCB up to
factors of 1/(1 — )




Compare to prior art under full coverage
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Compare to prior art under full coverage
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Our DRVI-LCB method is near minimax-optimal!

30



Numerical experiments

DRVI-LCB
—— DRVI

0 10 20 30 40
Index of states

® DRVI-LCB: ours with pessimism
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Sample size N

e DRVI: prior art
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Numerical experiments

DRVI-LCB DRVI-LCB
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Pessimism improves the sample efficiency in robust offline RL! J
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Concluding remarks



Concluding remarks
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Model-based offline RL algorithms with pessimism are near
minimax-optimal in both nominal MDP and robust MDP!

J
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Thank you!

® Settling the sample complexity of model-based offline reinforcement
learning, arXiv:2204.05275.

® Pessimistic Q-Learning for Offline Reinforcement Learning: Towards
Optimal Sample Complexity, ICML 2022.

® Distributionally Robust Model-Based Offline Reinforcement Learning with
Near-Optimal Sample Complexity, arXiv:2208.05767.

https://www.andrew.cmu.edu/user/laixis/
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