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 If the attack is successful, the following control packets (e.g., ACK/NACK) 

will be likely corrupted.

 Plan:

 Quantify the impact

 Detect

 Defend
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Understanding the fundamentals

 We want to quantify the impact and devise the protocols accordingly.

 We focus on small ACK/NACK control packets in a broadcast setting.
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 We look at a fundamental model, the packet broadcast channel.

 Each user informs the transmitter whether the transmitted packet was 

received successfully or not.

 Why this model?
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Denial-of-service attack

 Is this single-user knowledge still useful?

 For MISO BC with continuous feedback, the answer is no!

 We have a much brighter picture in packet networks!

R1

R2

Tx

Rx1

Rx2

Vahid et. al, “Capacity of broadcast packet erasure channels with single-user delayed CSI,” Trans. IT, 2021.
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Tx

Rx1

Rx2

Each Rx simply broadcasts its control packet.

All control channels have some probability of failure.

average of no and 
full control packets

x

R1

R2

Capacity with 

intermittent 

control channels

Vahid et. al, “Erasure broadcast channels with intermittent feedback,” Trans. Comm, 2021.
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Tx

Rx1

Rx2

Each Rx simply broadcasts its control packet.

All control channels have some probability of failure.

 Phase 1: Send bits for user 1.

• when there is FB: v1 are the bits at Rx2 needed at Rx1

• when no FB: v1 are statistical equations needed at Rx1

 Phase 2: Send bits for user 2. Create v2 and v2.

 Phase 3: send the summation of v1 & v2.

 Recursion: Use v1 & v2 as inputs to Phase 1.

_

_

_ _
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Extreme environment

Tx

Rx1

Rx2

The available control channels have sub-bit capacity! ෡𝑆𝐹

෡𝑆𝐹

Rate-distortion theory gives us

the minimum attainable distortion.

Error-Free 
Feedback Signaling

x

RF

RN

Distortion-Based 

Outer-Bounds

Vahid, “Distortion-Based Outer-Bounds for Channels with Rate-Limited Feedback,” ISIT, 2021.
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Remaining theoretical questions

Tx

Rx1

Rx2

 How do the results scale?

 What is the delay implications of the protocols?

 The extreme sub-bit regime remains open.

 Spectrum sharing

 Can these ideas be incorporated in existing protocols?
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 Desired user will always be at 0° phase, while others 

see varying phases. (rel. to antenna-selection mod.)

 Embedding information in radiation pattern 

fluctuations is itself a worthy direction.

Vahid et al, “Exploiting coherence time variations for opportunistic blind interference alignment,” Trans. Comm, 2020.
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Defending WiFi against Control Ch. 

Attacks

 Radiation pattern fluctuations.

WiFi localization (e.g., time of flight).

Channel signatures.

Vahid et al, “A Game-Theoretically Optimal Defense Paradigm against Traffic Analysis Attacks Using Multipath 
Routing and Deception,” SACMAT, 2022.

Vahid et al, “Toward practical defense against traffic analysis attacks on encrypted DNS traffic,” Computers & 
Security, 2022.
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