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» |f the attack is successful, the following control packets (e.g., ACK/NACK)
will be likely corrupted.

» Plan:
» Quantify the impact
®» Detect

» Defend
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» We want fo quantify the impact and devise the protocols accordingly.

» We focus on small ACK/NACK control packets in a broadcast setting.
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®» Fqach user informs the tfransmitter whether the transmitted packet was
received successfully or nof.

= Why this model?
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Denial-of-service attack

® |s this single-user knowledge still usefule

» For MISO BC with continuous feedback, the answer is nol!

» We have a much brighter picture in packet networks!

Vahid et. al, “Capacity of broadcast packet erasure channels with single-user delayed CSI,” Trans. IT, 2021.
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Vahid et. al, "“Erasure broadcast channels with intermittent feedback,” Trans. Comm, 2021.




General denial-of-attack on control

,,,,, = RXx; v
> i\ Lo Each Rx simply broadcasts its control packet.
TX Sl ‘. -|
\ I All control channels have some probability of failure.

S:ft) /
Ve 0 .
----- A RX2 -

» Phase 1. Send bits for user 1.




General denial-of-attack on control

,,,,, = RXx; v
> o {0 / Lo Each Rx simply broadcasts its control packet.
TX l ‘. -|
\ I All control channels have some probability of failure.

S:ft) /
Ve 0 .
----- A RX2 -

» Phase 1. Send bits for user 1.

« when there is FB: v, are the bifs at Rx, needed af Rx;
- when no FB: v, are statistical equations needed at Rx;




General denial-of-attack on control

,,,,, = RXx; v
> o {0 / Lo Each Rx simply broadcasts its control packet.
TX l ‘. -|
\ I All control channels have some probability of failure.

S:ft) /
Ve 0 .
----- A RX2 -

» Phase 1. Send bits for user 1.

« when there is FB: v, are the bifs at Rx, needed af Rx;
- when no FB: v, are statistical equations needed at Rx;

» Phase 2: Send bits for user 2. Create v, and v..




General denial-of-attack on control

,,,,, = RXx; v
> S i\ Lo Each Rx simply broadcasts its control packet.
TX l ‘. -|
\ I All control channels have some probability of failure.

S:ft) /
Ve 0 .
----- A RX2 -

» Phase 1. Send bits for user 1.

« when there is FB: v, are the bifs at Rx, needed af Rx;
- when no FB: v, are statistical equations needed at Rx;

» Phase 2: Send bits for user 2. Create v, and v..
» Phase 3: send the summation of v, & V..




General denial-of-attack on control

channels
- 0 RXl v, ] .
T‘x{ \-‘ Each Rx simply broadcasts its control packet.
\ I All control channels have some probability of failure.
S:ft) /
Y. .. _. O, RXZ ,'
» Phase 1. Send bits for user 1.

« when there is FB: v, are the bifs at Rx, needed af Rx;
- when no FB: v, are statistical equations needed at Rx;

» Phase 2: Send bits for user 2. Create v, and v..
» Phase 3: send the summation of v, & V..
» Recursion: Use v, & v, as inputs to Phase 1.
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The available control channels have sub-bit capacity!

Rate-distortion theory gives us
the minimum attainable distortion.

R 4

Error-Free
Feedback Signaling

Distortion-Based
Quter-Bounds

>

R
Vahid, "Distortion-Based Outer-Bounds for Channels with Rate-Limited Feedback,” ISIT, 2021. N
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How do the results scale?

What is the delay implications of the protocols?

The extreme sub-bit regime remains open.

Spectrum sharing

Can these ideas be incorporated in existing protocols?
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Aftacks

» Desired user will always be at 0° phase, while others
see varying phases. (rel. fo antenna-selection mod.)

» Fmbedding information in radiation pattern
fluctuations is itself a worthy direction.

Vahid et al, “Exploiting coherence time variations for opportunistic blind interference alignment,” Trans. Comm, 2020.
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Aftacks

» Radiation pattern fluctuation:s. o

NS

» WiFi localization (e.g., fime of flight). ¢ J

» Channel signatures.

Vahid et al, “A Game-Theoretically Optimal Defense Paradigm against Traffic Analysis Attacks Using Multipath
Routing and Deception,” SACMAT, 2022.

Vahid et al, “Toward practical defense against traffic analysis attacks on encrypted DNS traffic,” Computers &
Security, 2022.
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