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Distributed Optimization

Leaderless optimization and control for multi-agent systems.

Machine learning (training a shared model with local
datasets).

Robotic and drone networks (rendezvous problem).

Sensor networks (data fusion).

Distributed optimization:

x⋆ = argmin
x∈X

f(x), with

f(x) =
1

n

n∑
i=1

fi(x).
i

j

𝑥𝑗(𝑡)

𝑥𝑖(𝑡)
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Assumption

We assume that X ⊂ Rd is compact and convex and that there
exists a known value η > 0 such that

∥x∥ ≤ η, ∀x ∈ X . (1)

Assumption

The functions fi are µ-strongly convex and haveL-Lipschitz
continuous gradients, i.e.,
∥∇fi(x)−∇fi(y)∥ ≤ L∥x− y∥, for all x ∈ Rd.

It follows that there is a scalar G such that:

∥∇fi(x)∥ ≤ G, ∀x ∈ X , i ∈ L.
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Solving Distributed Optimization Problems

Let us consider connected graph G = (V,E), a stochastic
weight matrix W and initial vector values x(0). Then, the
distributed optimization problem can be solved using the following
dynamic:

ci(t) = wii(t)xi(t) +
∑
j∈Ni

wij(t)xj(t),

yi(t) = ci(t)− γ(t)∇fi(ci(t)),

xi(t+ 1) = ΠX (yi(t)) , (2)

where Ni = {j ∈ V | {i, j} ∈ E}, and γ(t) ≥ 0 such that:

∞∑
t=0

γ(t) = ∞ and
∞∑
t=0

γ2(t) < ∞.
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For the time being, let us assume that W (t) = W is a fixed doubly
stochastic matrix and denote by ρL < 1 its second largest
eigenvalue modulus. Additionally, denote

h(T ) ≜
G2T

µ
+

2G2T

µ(1− ρL)
+

8(µ+ L)G2

µ2(1− ρL)2
ln

(
T + 2

2

)
+

2ηG

1− ρL

+
2(µ+ L)(µη + 2G)2

µ2(1− ρL)2
+

2G2 + 4Gη(µ+ L)

µ(1− ρL)3
+

G2(µ+ L)

µ2(1− ρL)4
.

If all the agents are truthful, the dynamic (2) converges to the
optimal point for every initial point xi(0) ∈ X , i ∈ V:

lim
t→∞

∥xi(t)− x⋆∥ = 0, ∀ i ∈ L.

Moreover, if γ(t) = 2
µ(t+1) , then

1

n

∑
i∈L

∥xi(T )− x⋆∥2 ≤ min

{
4η2,

4h(T )

µT (T + 1)

}
, (3)

for any initial points xi(0) ∈ X , i ∈ V, and any T ≥ 1.
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Distributed Optimization with Malicious Agents

In practice, some agents can be malicious and input values to take
the dynamic (2) away from its optimal value.
In this case, V = L ∪M where L is the set of legitimate agents
and M is the set of malicious agents.

We are interested in solving the following problem without knowing
the identities of the legitimate and malicious agents in advance:

x⋆L = argmin
x∈X

f(x), with f(x) =
1

|L|
∑
i∈L

fi(x). (4)

Sundaram and Gharesifar, 2019 show that even a single malicious
agent can prevent the näıve implementation of the dynamic (2)
from converging to x⋆L.
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Agents’ Trust Values in Cyberphysical Systems I

Additional works have studied the number of malicious agents that
can be mitigated. However, the guaranteed number is small and
can be smaller than half of the network connectivity.

Prior works have used the data values to overcome/detect
malicious behavior. The physical aspects of the problem have not
been considered. A particular example is the wireless
communication channels.

In cyberphysical systems:

Malicious agents can lie about their location.

A malicious agent can create many fictitious identities (Sybil
attack).
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Agents’ Trust Values in Cyberphysical Systems II

Each transmitted signal leads to
received signal characteristics:

Number of paths, delays.

Angles of arrival.

Power order of the angles of
arrival.

Power of the received
signals. *Guaranteeing spoof-resilient

multi-robot networks, S. Gil et al 2017.
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Agents’ Trust Values in Cyberphysical Systems III

We can generate trust values that capture the event that an agent

lies about its location

Location Verification Systems for VANETs in Rician Fading Channels, S.

Yan et al 2016.

uses a Sybil attack and creates multiple fictitious agents
Detecting Colluding Sybil Attackers in Robotic Networks using
Backscatters Y. Huang et al 2021.

(Limited to single antenna malicious agents.)

Guaranteeing spoof-resilient multi-robot networks, S. Gil et al 2017.

(Limited to single antenna malicious agents.)
The Mason Test: A Defense Against Sybil Attacks in Wireless Networks
Without Trusted Authorities, Liu et al 2015.

(Assumes limited mobility of malicious agents and no beamforming).

We denote by αij(t) ∈ [0, 1] the instantaneous single sample
trust agent i gives agent j at time a t.
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Research Objectives I

Recall the dynamic (2):

ci(t) = wii(t)xi(t) +
∑
j∈Ni

wij(t)xj(t),

yi(t) = ci(t)− γ(t)∇fi(ci(t)),

xi(t+ 1) = ΠX (yi(t)) .

Objective 1

We wish to construct weight sequences {wij(t)}, i ∈ L, j ∈ Ni in
the method (2) such that they converge over time to some
nominal weights wij , i ∈ L, j ∈ Ni, almost surely (a.s.), where
wij = 0 for all malicious neighbors j ∈ Ni ∩M of agent i ∈ L.
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Research Objectives II

Objective 2

Utilizing the proposed weights {wij(t)}t=1,..., we aim to show that
the iterates given by (2) converge (in some sense) to the true
optimal point x⋆L ∈ X .

Objective 3

We aim to establish an upper bound on the expected value of
∥xi(t)− x⋆L∥2, for all i ∈ L, as a function of the time t, for the
iterates xi(t) produced by the method.
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Cumulative Trust Values

We assume that:

αij(t) are statistically independent.

There exist scalars EL > 0 and EM < 0 such that

EL ≜ E(αij(t))− 1/2 for all i ∈ L, j ∈ Ni ∩ L,

EM ≜ E(αij(t))− 1/2 for all i ∈ L, j ∈ Ni ∩M.

To capture the history of observations αij(t), we define:

βij(t) ≜
t−1∑
k=0

(αij(k)− 1/2) for t ≥ 1, i ∈ L, j ∈ Ni,

with βij(0) = 0.
Agent i classifies agent j as legitimate if βij(t) ≥ 0 and malicious
otherwise.
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Motivation: Finite Correct Classification Time

Lemma

For every t ≥ 0 and i ∈ L

Pr (βij(t) < 0) ≤ exp(−2tE2
L), j ∈ Ni ∩ L,

Pr (βij(t) ≥ 0) ≤ exp(−2tE2
M), j ∈ Ni ∩M.

This is an immediate result of the Chernoff-Hoeffding Inequality.

Proposition

There exists a (random) finite time instant Tf > 0 such that every
legitimate agent i correctly classifies its neighbors for all t ≥ Tf

almost surely.

This proposition follows by the Borel-Cantelli Lemma
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Trust-Based Weights I

Define the time dependent trusted neighborhood for agent i ∈ L:

Ni(t) ≜ {j ∈ Ni : βij(t) ≥ 0}. (5)

For all t ≥ 0, let

di(t) ≜ |Ni(t)|+ 1 ≥ 1 for all i ∈ L.

We define the weights wij(t) as follows: for every i ∈ L, j ∈ Ni,

wij(t) =


1{t≥T0}

2·max{di(t),dj(t)} if j ∈ Ni(t),

0 if j /∈ Ni(t) ∪ {i},
1−

∑
m∈Ni

wim(t) if j = i.
(6)

where T0 is the number of trust observations collected before the
legitimate agents trust any of their neighbors.
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Trust-Based Weights II

By the Borel-Cantelli lemma wij(t) converges a.s. to the matrix
wij , where

wij =


1

2·max{di,dj} if j ∈ Ni∩,
0 if j /∈ Ni ∪ {i},
1−

∑
m∈Ni

wim if j = i,
(7)

di = |Ni|+ 1.
This is a special matrix that is doubly stochastic for the legitimate
agents and ignores the malicious agent’s inputs.
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Asymptotic Convergence to the Optimal Nominal Point

Theorem (Convergence a.s. to the optimal point)

The sequence {xi(t)} converges a.s. to x⋆L for every i ∈ L and
T0 ≥ 0.

Theorem (Convergence in mean to the optimal point)

For every T0 ≥ 0, the sequence {xi(t)} converges in the r-th mean
to x⋆L for every i ∈ L and r ≥ 1, i.e.,

lim
t→∞

E [∥xi(t)− x⋆L∥r] = 0, for all r ≥ 1.
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The Expected Convergence Rate via the Correct
Classification Time I

Consequently we can upper bound the convergence rate as follows:

Theorem

For every t ≥ T0 we have that the expected error is bounded by a
decaying function such that:

1

|L|
∑
i∈L

E[∥xi(t)− x⋆∥2]

≤ min
m∈[T0:t−1]

{
min

{
4η2,

4h (t−m)

µ(t−m)(t−m+ 1)

}
+ 4η2pe(m)

}
.
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The Expected Convergence Rate via the Correct
Classification Time II

1

|L|

∑
i∈L

E[∥xi(t) − x
⋆∥2] ≤ min

{
4η

2
,

4h (t − T0)

µ(t − T0)(t − T0 + 1)

}
+ 4η

2
pe (T0) , (8)

1

|L|

∑
i∈L

E[∥xi(t) − x
⋆∥2] ≤ min

4η
2
,

16h
(

t−T0
2

)
µ(t − T0)(t − T0 + 2)

 + 4η
2
pe

(
t + T0

2
− 1

)
, (9)

1

|L|

∑
i∈L

E[∥xi(t) − x
⋆∥2] ≤ min

4η
2
,

4h

(
t − ⌈ ln(t)

2min{E2
L,E2

M}
⌉
)

µ

(
t − ⌈ ln(t)

2min{E2
L,E2

M}
⌉
)(

t − ⌈ ln(t)

2min{E2
L,E2

M}
⌉ + 1

)


+ 4η
2 ·

DL + DM

T
. (10)
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Expected Deviation from Mean Value

Denote,

DL ≜
∑
i∈L

|Ni ∩ L| and DM ≜
∑
i∈L

|Ni ∩M|.

Additionally, denote the following upper bound of a
misclassification error:

pc(k) ≜ 1{k≥0}

[
DLe

−2kE2
L +DMe−2kE2

M

]
.

Recall that ρL < 1 is the second largest eigenvalue modulus of the
doubly-stochastic nominal weight matrix W .

20 / 28



Denote, xL(t) ≜ 1
|L|

∑
i∈L xi(t), and

δM(t, T0) ≜ 2ηρt−T0
L +

(2η
√

pc(T0) +Gγ(0))ρ
(t−T0)/2
L

1− ρL

+
2(η

√
pc((t+ T0)/2) +Gγ((t− T0)/2))

1− ρL
. (11)

Lemma

For every t ≥ 0

1

|L|
∑
i∈L

E∥xi(t)− xL(t)∥ ≤ δM(t, T0), and

1

|L|
∑
i∈L

E∥xi(t)− xL(t)∥2 ≤ δ2M(t, T0).
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Tightening the Convergence Results

Theorem

For every collection xi(0) ∈ X , i ∈ L,of initial points i.e.,

lim
t→∞

E
[
∥xi(t)− x⋆L∥2

]
= 0, ∀ i ∈ L. (12)

Moreover, let γ(t) = 2
µ(t+2) . Then, for every T0 ≥ 0 and T ≥ T0

there exists a function CM(T0) that decreases exponentially with
T0 and is independent of T such that for any collection xi(0) ∈ X ,
i ∈ L, and for all T ≥ T0,

1

|L|
∑
i∈L

E
[
∥xi(T )− x⋆L∥2

]
≤ min

{
4η2,

4h(T − T0) + CM(T0)

µ(T − T0)(T − T0 + 1)

}
.

(13)
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Numerical Results I

|L| = 15 legitimate agents, |M| ∈ {15, 30};
d = 1 and η = 50;

E(αij) = EL = 0.55 for i ∈ L, j ∈ Ni ∩ L,
E(αij) = EM = 0.45 for i ∈ L, j ∈ Ni ∩M,

αij ∼ U
[
E(αij)− ℓ

2 , E(αij) +
ℓ
2

]
, where

ℓ = 0.6, 0.8.

The legitimate agents aim to minimize the function

arg min
x∈[−η,η]

{
1

|L|
∑
i∈L

(x− ui)
2

}
≈ 31.4,

where ui were chosen from the interval [−200, 200].

Classical bound must fulfill |M| < 3+|M|
2 ⇒ |M| < 3.
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Numerical Results II

Denote e(t) ≜ 1
|L|

∑
i∈L |xi(t)− x⋆L|.
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Numerical Results III

Next, we extend these numerical results to a higher-dimensional
setup where d = 5.

min
x∈[−η,η]d

{
1

|L|
∑
i∈L

1

2
(aTi x− bi)

2 +
1

2
∥x∥2

}
. (14)

In this setup

∇fi(x) = ai(a
T
i x− bi) + x.

The projection is with respect to the 5-dimensional box [−50, 50]5.
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Numerical Results IV

Denote e(t) ≜ 1
|L|

∑
i∈L ∥xi(t)− x⋆L∥.
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Conclusions

Physical-based trust values to increase resiliency to malicious
inputs.

Trust-based weight matrix.

Finite detection time a.s.

Convergence to the optimal nominal value.

Expected convergence rate.

Numerical results that validate our analytical results.
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Thank you!

Reach out for further discussions: michal.yemini@biu.ac.il

CDC paper: Resilience to Malicious Activity in Distributed
Optimization for Cyberphysical Systems, December 2022.

Journal version (with proofs) on arXiv:
Resilient Distributed Optimization for Multi-Agent Cyberphysical
Systems: https://arxiv.org/pdf/2212.02459.pdf

28 / 28

michal.yemini@biu.ac.il
https://arxiv.org/pdf/2212.02459.pdf
https://arxiv.org/pdf/2212.02459.pdf
https://arxiv.org/pdf/2212.02459.pdf

