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Multi-Armed Bandits

▶ K arms with unknown rewards.
▶ At each time t a player chooses to play

an arm I(t) and receives a reward
XI(t),t.

▶ The rewards of each arm i are i.i.d.
with mean µi.

▶ The player aims to maximize its total
expected reward, or minimize its
pseudo-regret

R(t) = t max
i∈1,...,K

µi −
∑
i∈[K]

E(Ni(t)) · µi,

where Ni(t) =
∑t

τ=1 1[Iτ = i].

A logarithmic regret is attainable with a UCB approach for the
mean reward estimation.
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Information as a Reward

▶ We consider a different reward structure, which is based on the
informativness of the arm.

▶ A player has the goal of sampling from the most informative source.

▶ We focus on the natural choice of entropy with practical applications
such as, coverage, ecosystem recovery and anomaly detection in
mind.
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Informational Multi-Armed Bandits

{Xi}Ki=1 be memoryless sources, each defined on an alphabet Xi.

Denote pi(x) := P[Xi = x] and let pi = {pi(x)}x∈Xi
the PMF of the ith

source.

▶ At each round t, the player chooses one of the sources
i ∈ [K] := {1, 2 . . . ,K} and observes the symbol Xi(t) from that
source.

▶ The reward associated with this arm choice and this random
observation is the self-information: − log pi(Xi(t)).

▶ The goal of the player is to choose the arm with the maximal
expected reward, i.e., the maximal entropy, i∗ ∈ argmax

i∈[K]

Hi. This is

equivalent to minimizing the pseudo-regret:

R(t) := t ·Hi∗ −
∑
i∈[K]

E(Ni(t)) ·Hi. (1)

The player does not know in advance the PMFs pi,
nor the entropy values Hi.
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Informational MAB vs. Classical MAB

Informational MAB Classical MAB

Model flow
Player’s observation Instantaneous symbol Instantaneous reward
Reward estimation Biased (Paninski 2003) Unbiased

So far, UCB bounds have relied on the unbiasedness of the sampled mean
of the rewards. This does not hold in IMAB.
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A General UCB-Entropy Algorithm

1: Inputs: K, {Xi}i∈[K], Ĥ(·, n) ,UCB(·, ·, n), α, δα(t)
2: set Xi(0) = ϕ and Ni(0) = 0 for all i ∈ [K]

▷ Empty history sets at round t = 0
3: for t = 1, 2, . . . do
4: play I(t) ∈ argmaxi∈[K]{Ĥ(Xi(t− 1), Ni(t− 1))) +

UCB(Xi(t− 1), δα(t), Ni(t− 1))}
5: set XI(t)(t) = XI(t)(t− 1) ∪XI(t)(t) and

NI(t)(t) = NI(t)(t− 1) + 1
▷ Updating observation history of the current arm

6: set Xi(t) = Xi(t− 1) and Ni(t) = Ni(t− 1) for all i ∈ [K]\I(t)
▷ The observation set of other arms is unchanged

7: end for
8: return {Ni(t)}i∈[K], t∈N+

▷ The number of times arm i was played by round t

How should we choose Ĥ(Xi(t− 1), Ni(t− 1))) and
UCB(Xi(t− 1), δα(t), Ni(t− 1))?

What is the resulting pseudo-regret?
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UCB for Bias-Correction Entropy Estimation

Let p be a PMF defined on an alphabet Y, and p̂(n) be the MLE p given
n samples. Then

p̂(y, n) :=
1

n

n∑
ℓ=1

1{Yℓ = y}, for all y ∈ Y. (2)

Upper bounding the MLE bias: (Paninski 2003)

H(p)−B(n) ≤ E[H(p̂(n)) ≤ H(p), (3)

where B(n) := log
(
1 + |Y|−1

n

)
.

Thus, the bias-corrected term

Ĥ(p̂(n)) = H(p̂(n)) +B(n) (4)

has a nonnegative bias.
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UCB for Bias-Correction Entropy Estimation
(cont.)

UCB for bias correction estimator

Let Y = {Yℓ}ℓ∈[n] be IID from a discrete distribution p over a
finite alphabet Y such that p(y) := P[Y = y].
Then, assuming n ≥ 2, it holds for any δ ∈ (0, 1) that

|H(p̂(n)) +B(n)−H(p)| ≤ UCBbias(δ, n), (5)

with probability larger than 1− δ, where

UCBbias(δ, n) := B(n) +

√
2 log2(n)

n
log

(
2

δ

)
. (6)

This UCB leads to the following regret bound:
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UCB for Bias-Correction Entropy Estimation
(cont.)

Pseudo-regret for the bias-correction entropy estimation

Let Λk(s) := s · logk s and

Γbias(α, β,Y,∆, t) :=max

{
|Y|−1

e
β∆
2 − 1

, 15Λ2

(
8 log(2tα)

(1− β)2∆2

)}
.

Assume that the general UCB-entropy algorithm is run with
Ĥ(Y , n) ≡ H(p̂(n)) + B(n), and UCB(Y , δ, n) ≡ UCBbias(δ, n)
with δ ≡ δα(t) = t−α and α > 2. Let β ∈ (0, 1) be given. Then,
the pseudo-regret is bounded as

R(t) ≤
∑

i∈[K]:∆i>0

[
Γbias(α, β,Xi,∆i, t) ·∆i +

2(α− 1)

α− 2
·∆i

]
.

Thus, the regret scales as Õ( log(t)∆i
), where the only difference from the

standard UCB is the additional poly-logarithmic term.

9 / 21



UCB for Total-Variance Distance Based Entropy
Estimation

▶ The bias term B(n) := log
(
1 + |Y|−1

n

)
only depends on the

alphabet size and is not sensitive to the source PMF.

▶ Can we improve the bounds whenever the entropy of sources is
much less than the alphabet size?

Motivation:

Consider a Bernoulli arm for which pi(1) = P[Xi = 1] ≪ 1.

The entropy of this arm is much smaller than the maximal possible value
of log|Xi|= log(2).

A multiplicative Chernoff’s inequality results in a confidence interval of

O(
√

pi(1) log(1/δ)
n ) in the estimation of pi(1) using n samples from the

source. Since pi(1) ≪ 1, this is much smaller than O(
√

log(1/δ)
n ).

Nonetheless, pi(1) is unknown and thus must be estimated.
Hereafter, we focus on the binary IMAB.
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UCB for Total-Variance Distance Based Entropy
Estimation (cont.)

The proposed UCB algorithm and its regret analysis are based on the
following inequality (that holds as long as dTV(p, q) ≤ 1

2 ):

|H(p)−H(q)| ≤ dTV(p, q) log

(
|Y|

dTV(p, q)

)
, (7)

where dTV(p, q) =
∑

y∈Y |p(y)− q(y)| is the total variation distance
between PMFs p and q defined on a common alphabet Y.
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UCB for Total-Variance Distance Based Entropy
Estimation (cont.)

As a result we choose the following confidence interval function

UCBber(q, δ, n) :=

√
12q log

(
6
δ

)
n

log

(
n

q log
(
6
δ

))+
18 log

(
6
δ

)
log(n)

n
,

(8)
and the corresponding confidence interval bound for the plug-in entropy
estimator:

UCB for Binary Entropy Estimation

Let Y = {Yℓ}ℓ∈[n] be IID from a Bernoulli with parameter p =

P[Yi = 1], and let p̂(n) = 1
n

∑n
ℓ=1 1{Yℓ = 1} be the empirical

probability of ′1′. Let δ ∈ [0, 1
2 ] be given. If n ≥ 200 · log

(
4
δ

)
then

|hb(p̂(n))− hb(p)| ≤ UCBber(p̂(n), δ, n),

with probability larger than 1− δ.
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UCB for Total-Variance Distance Based Entropy
Estimation (cont.)

Pseudo-regret TV upper bound for binary sources

Assume that Xi = {0, 1} for all i ∈ [K] and that the general
UCB-entropy algorithm is run with the plug-in entropy estimator
Ĥ(Y , n) ≡ H(p̂(Y , n)) and upper confidence interval

UCB(Y , δ, n) ≡ UCBber(p̂(Y , n), δ, n),

(as defined in (8)) with δ ≡ δα(t) = 6t−α with α > 2. Then,

R(t) ≤
∑

i∈[K]:∆i>0

inf
β∈(0,1)

Γber(α, β, pi(1),∆i, t)·∆i+
16(α− 1)

α− 2
·∆i

where
Γber(α, β, q,∆, t) := max

{
6 · Λ1

(
36α log(t)

(1− β)∆

)
,

5120qα log(t)

β2∆2
· log2

(
48

β2∆2

)
,
88

√
α log(t)

β∆
· log

(
48

β2∆2

)}
,
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Can we tighten this upper bound
on the pseudo-regret even further?
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An asymptotic lower bound for binary IMABs

Let DKL(p||q) := p log(p/q) + (1− p) log((1− p)/(1− q)) be the binary
Kullback-Leibler divergence, where if q ∈ {0, 1} and p ̸= q then
DKL(p||q) := ∞.

LR lower bound

Consider the IMAB problem with K arms. A problem instance I is
the collection {pi}i∈[K] with pi ≡ pi(1) ∈ [0, 1/2). Suppose that
a IMAB algorithm is such that R(t) = O(CI,at

a) for each problem
instance I and a > 0. Then, for any instance I,

lim inf
t→∞

R(t)

log(t)
≥

∑
i∈[K]:∆i>0

∆i

DKL(pi||pi∗)
,

where ∆i = maxj∈[K] hb(pj)− hb(pi).
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An asymptotic lower bound for binary IMABs
(cont.)

Consider the case where K = 2 (two arms) and the two regimes:

▶ p1(1) = p, p2(1) = p− Λ and Λ ↓ 0. Then
∆ = hb(p1)− hb(p2) = Θ(Λ), DKL(p2||p1) = Θ(Λ2), and the ratio
in the lower bound is Θ( log t

Λ ). This is the upper bound we achieve
using TV distance based entropy without the poly-logarithmic terms.

▶ p1(1), p2(2) ≈ 1
2 , the binary entropy function ”flattens”, and is

markedly different from the standard linear reward function. Assume
that p1 = 1

2 − Λ and p2 = 1
2 − 2Λ. Then,

∆ = hb(p1)− hb(p2) = Θ(Λ2) and DKL(p2||p1) = Θ(Λ2), and the
lower bound is asymptotically Θ(log t) even if Λ ↓ 0 and so also
∆ ↓ 0. Thus, in this case we should explore ways to decrease the
upper bound on the pseudo-regret.
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Denote

UCB
(1/2)
ber (q, δ, n) := 7

∣∣∣∣12 − q

∣∣∣∣ ·
√

log
(
4
δ

)
n

+
9 log

(
4
δ

)
n

. (9)

Pseudo-regret TV upper bound for binary sources p ≈ 1/2

Let Xi = {0, 1} and 2
5 ≤ p2(1) < p1(1) < 1

2 with ∆ =
hb(p1) − hb(p2). Further let the general UCB-entropy algorithm
run with the plug-in entropy estimator Ĥ(Y , n) ≡ H(p̂(Y , n)) and

UCB(Y , δ, n) ≡ UCB
(1/2)
ber (p̂(Y , n), δ, n) with δ ≡ δα(t) = 4t−α

with α > 2. Then,

R(t) ≤
784

(
1
2 − p2(1)

)2
α log(t)

∆
+ 60α log(t) +

8(α− 1)

α− 2
·∆.

Sketch of the proof: approximate the binary entropy by its Taylor

approximation. (In this case,
(
1
2 − p2(1)

)2
= Λ2 = Θ(∆). )
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Numerical Results - Binary Alphabet

Setup: two-armed IMAB with binary alphabets.

0 0.5 1 1.5 2

Number of rounds 10
6

0

0.5

1

1.5

2

2.5

3

A
v
e
ra

g
e
 t
o
ta

l 
re

g
re

t

10
4

UCB-Bias

UCB-TV

(a) p1(1) = 0.025, and
p2(1) = 10−4
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(b) p1(1) = 0.3 and p2(1) = 0.15
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Numerical Results - Ternary Alphabet

Setup: two-armed IMAB with ternary alphabets.
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(a) p1(0) = p1(1) = 0.0125,
p2(0) = p2(1) = 5× 10−5
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(b) p1(0) = p1(1) = 0.15,
p2(0) = p2(1) = 0.075
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Open problems

Open problem 1: Conjecture

There exists an entropy estimator and a UCB for the IMAB that
achieve the asymptotic lower bound for the binary case.
(Note that in this special case we can simply look for the arm with the smallest distance
|pi(1)−0.5|, however, we are aiming to find schemes that can be extended (interpretable)
to the general alphabet case.)

Open problem 2

We can extend the results of the binary alphabet to larger alpha-
bets, however, the pseudo-regret bounds are not as tight. Is it
possible to derive tighter upper bounds on the pseudo regret for a
larger alphabet size?

Open problem 3

Explore the relation of the IMAB to heavy-tailed MAB.
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Conclusions

▶ We introduced the informational multi-armed bandit problem with
entropy rewards.

▶ The reward is not directly observed and its estimators suffer from
bias.

▶ We presented a general UCB-entropy algorithm.

▶ We proposed two methods for estimating the entropy of the source
and accompanied them with UCB.

▶ Numerical results.

▶ Open problems.
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