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With climate change bringing significant impacts to society, it is important to . .  Airports
inform climate change mitigation and adaptation strategies which requires a :
wide range of data. However, existing data are not always geographically
complete or sufficiently up-to-date.

We compiled 11 million text-image pairs
to enhance the artificial intelligence model
training process.

Text label categories within these images

Our overarching mission is to enable global, automated assessment of include climate-related features such as:

energy infrastructure to develop pathways to sustainably address ° erportsl,al t
energy needs and climate impacts. To do this, our goal is to develop a . ° PO\r/tver ants
techniqgue that can take in text queries, and identify corresponding climate- ° O(f)f f\ nstallat
relevant objects in remotely-sensed data. This will allow researchers to ° Wi sd?rre br)sa ations
quickly collect valuable information from remotely-sensed data such as . ° le udr I\I/Inetsl Mini
location and characteristics of key infrastructure and the impacts on natural ° G?a anhaivietal Mining
resources. ¢ laclers
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Q Create a bidirectional text-to-image search tool for climate inquiries on satellite imagery
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e Large quantities of high quality satelite imagery data with associated et st i ool e Wt _ encoderare updated, | a
labels (e.g., “airport”) are expensive to collect and curate Moo between corresponding text embedding and image embedding pairs. _.*

e EXxisting state-of-the-art pre-trained artificial intelligence image recognition | | | o 4. Tuned model with better performance on remote-sensing data. Returns |
models are usually trained on data that does not adapt well to the unique =~ OpenAl published the CLIP model [1] in 2021, enabling bidirectional text- I satellite images from text queries R
characteristics of satellite imagery in the remote sensing domain image mapping in a self-supervised manner (e.g., the model can extract / — %
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implicit information from unlabeled data). CLIP was designed to enable
high-quality text-image pairings without incurring the high cost of training a
new artificial intelligence model from scratch. However, CLIP tends to
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Remotely sensed data may perform poorly on remote-sensing datasets. : Airport p— :

vary significantly based on : :
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