Learning in the Delay-Doppler Domain

Robert Calderbank Duke University

Abstract: We describe how pulsones interpolate between TDM and FDM, and when it is possible to learn input-output relations without learning the channel, opening the door to machine learning.

Learn More - IEEE BITS Magazine: A Mathematical Foundation for Communications and Sensing in the Delay-Doppler Domain, Parts I and II – in collaboration with Saif Khan Mohammed, Ronny Hadani, and Ananthanarayanan Chockalingam

Disclosure: Advisor to Cohere Technologies

Doppler

Delay

So Many Channels, So Little Time

Leo-Satellite Channel UAV/Aeronautical Channel mmWave Mobile Channel Terrestrial Mobile Channel Terrestrial Pedestrian Channel

Today we design wireless systems using mathematical models

This approach is losing ground as wireless channels become more complex and Doppler becomes more significant

Might it be possible to operate model-free

We have Asked This Question Before

Newton's Laws of Motion Model-based approach that develops understanding at the most fundamental level.

Kepler's Laws of Planetary Motion Model-free approach that uses data to make predictions

Why Ask It Now?

Machine learning has revolutionized image and natural language processing Data-driven discovery has revolutionized bioinformatics

Machine learning (ML) is about approximating functions – broad impact comes from the fact that it is particularly effective in high dimensions

Classically we measure complexity of functions by smoothness – how many times the function can be differentiated

ML measures complexity by how well the function can be approximated by a particular neural network model – reproducing kernel Hilbert spaces, for example

**Weinan E*, The Dawning of a New Era in Applied Mathematics, Notices of the American Mathematical Society, May 2021

Localization in Delay and Doppler

Radar as a game of 20 questions with an operator

P.M. Woodward: *Probability and Information Theory, with Applications to Radar,* Pergamon Press, 1953

He viewed the problem of localizing a scatterer in delay and Doppler as using a waveform to ask questions of the operator defined by the radar scene

How to Design a Question:

Prediction as a game of 20 questions with a doubly spread channel

Representing Doubly Spread Channels

 $|h_4|$

 au_4

 $Delay(\tau)$

What Constitutes a Good Question?

Doubly Spread Channel: A sum of operators $D(\tau_i, v_j)$ introducing path delay τ_i and Doppler shift v_j

Waveforms are questions, returns are answers, objective is prediction

Time Domain (TD) Pulse: Good question for pure delay channels

Frequency Domain (FD) Pulse: Good question for pure Doppler channels

Delay-Doppler (DD) Domain Pulse: Good question for doubly spread channels

A Pulse in the Delay-Doppler Domain

The interaction of a DD domain pulse with a doubly spread channel is predictable, as long as the delay domain period τ_p is greater than the channel path delay spread, and the Doppler domain period v_p is greater than the path Doppler spread:

 $\tau_p > \max \tau_i - \min \tau_i$ and $\nu_p > \max \nu_i - \min \nu_i$

The Meaning of Predictability

Engineering Predictability

Fundamental Period: Blue Rectangle

No Aliasing: DD domain pulses received in the fundamental period are located within the red and the green triangles which do not overlap

ν (Doppler) ÷ $(0, \nu_p) \ (\tau_p, \nu_p)$ τ (delay) (0,0)

Encountering Unpredictability

 $\tau_p < \max \tau_i - \min \tau_i \& v_p > \max v_i - \min v_i$

Fundamental Period: Blue Rectangle

Aliasing: Small τ_p causes the green rectangle to overlap with the red and yellow rectangles, resulting in delay domain aliasing.

Non-Fading and Predictable Operation

Signal Processing in the DD Domain

The Fourier Transform as a Composition:

First apply Z_t from TD to DD domain, then apply Z_f^{-1} from the DD domain to the FD

Not more complicated than the Fourier Transform

Impact of Fading in the Crystalline Regime

Perfect Channel Estimation: EVA Channel Model

Summary

Performance in the crystalline regime is superior

Performance approaches TDM as the delay period $\tau_p \to \infty$

Performance approaches FDM as the Doppler period $\nu_p \rightarrow \infty$

Why Model-Free ?

Doubly Spread Channels are becoming

infinitely complicated

Input-Output Relations can be comparatively simple

Model-Free Operation: It is possible to use pulsones to learn the inputoutput relation directly without learning the channel

Model-Free vs Model-Dependent

In the crystalline regime, when it is possible to learn the channel:

Model-Dependent pulsone performance coincides with ideal performance

Model-Free pulsone performance is only slightly inferior

Model-Free vs Model-Dependent

When it is not possible to learn the channel:

Pulsones support model-free operation in the crystalline regime

Not shown: Improvements in filtering – root raised cosine vs. sinc – extend the region of reliable operation

Pushing the Envelope – Impact of High Doppler

Model-Free operation in the crystalline regime:

When the Doppler spread $2v_{max}$ is bounded away from v_p then pulsone performance does not degrade as v_{max} increases

When the Doppler spread $2v_{max}$ is close to v_p then performance degrades because of Doppler domain aliasing

Navigating Orders of Magnitude in Doppler Spread

$ au_p = 32 \ \mu s$ $ u_p = 31.2 \ KHz$		
	Delay Spread (μ s)	Doppler Spread (KHz)
Leo-Satellite Channel	0.8	82
UAV/Aeronautical Channel (GHz)	7.0 (Take Off) 33-60 (En-Route)	7.68 (En-Route)
mmWave Mobile Channel (28GHz)	1.0	3.0
Terrestrial Mobile Channel (GHz)	5.0	0.3
Terrestrial Pedestrian Channel (GHz)	0.41	0.005

Doppler

Delay

Conclusions

Bad News: It is becoming impossible to learn channels

Good News: It is still very possible to learn input-output relations

Pulsones enable model-free operation in the crystalline regime, opening the door to machine learning

What makes this possible? We are using the operators that define doubly spread channels both to probe the channel, and to transmit information

Live here, You must

Pulsones in the Crystalline Regime

