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Optimization Problem

We consider the decentralized optimization problem:

min {f(x) -y ﬁ-(x)} , (1)
=1

x: model parameters,

n: number of clients,

fi(x): loss function on client i, fi(x) := E¢,.p,f(x; &), where D; is the
local dataset on client /.

Note that each client can only communicate with its neighbors via a
predefined network topology (captured by a mixing matrix V).
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Challenges

There are many challenges in decentralized optimization:

e High communication cost

e Heterogeneous/Non-1ID data, the data distribution D; may vary from
different clients

e Data privacy

o ...

We will focus on the communication cost and heterogeneous data.
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Related Work

To reduce communication cost, people usually use compressed
communication (e.g., Alistarh et al. (2017); Stich et al. (2018);
Koloskova et al. (2019); Richtarik et al. (2021)).

Definition (compression operator)

A randomized map C : RY — RY is an a-compression operator if for all

x € RY, it satisfies
E[C(x) — x[I”] < (1 = a)|Ix[I* (2)

In particular, no compression (C(x) = x) implies o = 1.
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Definition (compression operator)

A randomized map C : RY — RY is an a-compression operator if for all
x € RY, it satisfies , )
Eflc(x) =[] < (1 = a)|Ix]I" (2)

In particular, no compression (C(x) = x) implies o = 1.

Examples: randomy(x) = x ® u (where u is a uniformly random binary
vector with k nonzero entries, ® denotes element-wise product) satisfies
(2) with a = k/d.  topy(x) also satisfies (2) with o« = k/d.
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Related Work

Although previous works reduce the communication cost via
compression, they achieve slow convergence rates (need more
communication rounds) and require bounded gradient/dissimilarity
assumption (do not suit for heterogeneous data setting)
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Related Work

Although previous works reduce the communication cost via
compression, they achieve slow convergence rates (need more
communication rounds) and require bounded gradient/dissimilarity
assumption (do not suit for heterogeneous data setting)

Recall the problem here: min, g {f(x):= 23" | fi(x)}, where
fi(x) := E¢p,f(x;&), and D; is the local dataset on client /.

e Bounded gradient: E,.p,||Vf(x;&)|* < G2
e Bounded dissimilarity: E;||Vfi(x) — Vf(x)|? < G?
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Result Comparison

Table: Decentralized nonconvex optimization with communication compression

Algorithm Convergence rate | Strong assumption
SQuUARM-SGD nG2 .
(Singh et al., 2021) o <F + ) Bounded Gradient

DeepSqueeze c\2/3 C
(Tang et al., 2019) ((?) ) Bounded Dissimilarity
CHOCO-SGD G 2/3 .
(Koloskova et al., 2019) ( 7) ) Bounded Gradient
BEER (this paper) 0 (%) =

T : number of communication rounds
n: total number of clients

G: bounded gradient/dissimilarity assumption
(Ee, (x: &)l < G2 or Bj||VAi(x) = VE(x)|I” < G?)
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Our Approaches

CHOCO-SGD (Koloskova et al., 2019): O (($)*”) vs. BEER: O ()

e Improving O(1/T?/3) to O(1/T):

CHOCO-SGD uses the original Error Feedback (EF) compression
framework (Seide et al., 2014), while BEER adopts a better EF21
compression framework (Richtarik et al., 2021).
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CHOCO-SGD (Koloskova et al., 2019): O (($)*”) vs. BEER: O ()

e Improving O(1/T?/3) to O(1/T):

CHOCO-SGD uses the original Error Feedback (EF) compression
framework (Seide et al., 2014), while BEER adopts a better EF21
compression framework (Richtarik et al., 2021).

e Removing bounded gradient/dissimilarity G:

CHOCO-SGD uses plain gradients, while BEER adopts the gradient
tracking idea (Zhu and Martinez (2010); Nedi¢ et al. (2017)).
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Direct Compression Framework

e Recall the problem here: min, cgd {f(x IS L)}
e Recall the compression operator C, s.t. E[||C( ) — x||2] < (1—a)|x|?

e We point out that direct compression framework
xtHl = xt —pl S ¢(Vfi(xt)) does not work.
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e Recall the compression operator C, s.t. E[||C( ) — x||2] < (1—a)|x|?
e We point out that direct compression framework

xtHl = xt —pl S ¢(Vfi(xt)) does not work.
A counter-example: consider n =3 and let fi(x) = (a; x)? + 3|1x||2,
where a; = (—4,3,3)T, a2 =(3,-4,3)" and a3 = (3,3, -4)".
If algorithm starts with x° = (b, b, b), then V£ (x°) = b(—15,13,13) T,
Vh(x%) = b(13,-15,13)7, and V#3(x°) = b(13,13,—-15) .
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Direct Compression Framework

o Recall the problem here: min, cga {f(x) := 23" | fi(x)}.

e Recall the compression operator C, s.t. E[||C( ) — x||2] < (1—a)|x|?
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xttl=xt —pl S C(Vfi(x')) does not work.
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If algorithm starts with x° = (b, b, b), then V£ (x°) = b(—15,13,13) T,
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Direct Compression Framework

o Recall the problem here: min, cga {f(x) := 23" | fi(x)}.
e Recall the compression operator C, s.t. E[||C( ) — x||2] < (1—a)|x|?

e We point out that direct compression framework

xttl=xt —pl S C(Vfi(x')) does not work.
A counter-example: consider n =3 and let fi(x) = (a; x)? + 3|1x||2,
where a; = (—4,3,3)T, a2 =(3,-4,3)" and a3 = (3,3, -4)".
If algorithm starts with x° = (b, b, b), then V£ (x°) = b(—15,13,13) T,
Vh(x%) = b(13,-15,13)7, and V#3(x°) = b(13,13,—-15) .
If the compressor is top;, we have C(Vf(x%)) = b(—15,0,0)",
C(VH(x) = b(0,-15,0)7, C(VA(x%)) = b(0,0,—15)7,
and the next iteration x! = x% — 1 372 | ¢(V£(x%)) = (1 +57)x°, and
then xt = (1 + 57)tx? diverges exponentially.
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Error Feedback (EF) Compression Framework

EF was first proposed by Seide et al. (2014) as a heuristic, no theoretical
understanding until recently (Stich et al. (2018); Alistarh et al. (2018)).

Each client i € [n] sets the zero initial error €2 = 0
Each client i € [n] compress its initial gradient g? = C(yV£;(x?))
for t=0,1,2,... do
Server updates xt1 = xt — 130 ot
for all clients i =1,2,....ndo in paraIIeI
Compute error: ef™! = ef + yVf(x!) — g}
Compress error- compensated gradient g/*!
gt+1 C(et+1—|—’ny( t+1))

A L - o

and send to server:

7. end for
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Error Feedback (EF) vs. EF21

To compare them clearly, consider the case n =1 (single node):

EF (Seide et al., 2014)
1. Model update: x!™l =xt — g
2: Error: el = ef +7Vf(xt) — gt
3. Compress error-compensated gradient: gi*! = C(ef*! + 1V f(x'*1))
EF21 (Richtérik et al., 2021)
1. Model update: x'! = xt — 4gt
2. Update with a shifted compression: gt = gt + C(VF(xt™!) — gt)

t
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To compare them clearly, consider the case n =1 (single node):

EF (Seide et al., 2014)
1. Model update: x!™l =xt — g
2. Error: ett! = ef +4VF(xt) — gt
3. Compress error-compensated gradient: gi*! = C(ef*! + 1V f(x'*1))
EF21 (Richtérik et al., 2021)
1. Model update: x'! = xt — 4gt
2. Update with a shifted compression: gt = gt + C(VF(xt™!) — gt)

t

If compressor C is additive and positively homogeneous, EF = EF21.
gitl = C(et! + 4V F(xt1)) = C(ef + VI (xt) — gt + 4V (x'H1)
= C(e! +7VF(x) +C(IVF(x* ) — gf) = g +C(VA(x'1) — gt).
Let gt denote 7&*f, then gttt = (gt + C(VF(xt) — gt)) = gt
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Recall Our Approaches
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CHOCO-SGD (Koloskova et al., 2019)

Algorithm 4 CHOCO-SGD (Koloskova et al., 2019) as Error Feedback

input: Initial values x,(-m € R9 on each node ¢ € [n], consensus stepsize 7, SGD stepsize 7,
comm. graph G = ([n], F) and mixing matrix W, initialize x(o) xi- Y.—o,vie [n]

1: fortin0.. T — 1 do {in parallel for all workers i € [n]}

2: (t} = x —) + f}rzj {i,j}EE wU( P 3 ,Et)) < modified gossip averaging
3: (” ‘” Y L Error Feedback (EF)
4: (t} Q(vm) < compression
5: (H"l) Et) t(-t) < memory update
6: for neighbors j: {¢,j} € E (including {¢} € E) do
7: Send q:) and receive qgt) < communication
8: ”“H) = qgﬁ) “{-t) < local update
9: end_t‘nr
[10:  Sample £, compute gradient g." := VF;(x",¢") | plain gradients
11: E.H"’ e ?J ng,f” < stochastic gradient update
12: end for

Zhize Li (CMU) BEER May 2, 2022  14/20



Our BEER Algorithm

Algorithm 1 BEER: BEtter comprEssion for decentRalized optimization

1: Input: Initial point X° = 2¢17,G° =0, H* =0, V°? = VF(X,),
step size 1, mixing step size -y, minibatch size b

2: fort =0,1,... do EF21

% ‘X*“ = X'+ yH W —I)—nV*

4: Ht — H + (Xt — HY gradient tracking
50 | VEL= VI AGI W — 1) |+ VyF(X™H) - Vi F(XY)

6: G =G +C(V'" — G*)eron

7: end for
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Plain Gradients vs. Gradient Tracking

Let X :=[x1,X2,...,X,] € R9*" denote the collection of parameters
from all clients, and VF(X) := [VA(x1), VAa(X2), ..., Vix(x,)] € RI*"
denote the collection of local gradients.

The average X := 1X1 e RY, and v := 1VF(X)1 € RC.
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Plain Gradients vs. Gradient Tracking

Let X :=[x1,X2,...,X,] € R9*" denote the collection of parameters
from all clients, and VF(X) := [V (x1), VRa(Xx2), ..., Vi(x,)] € RI*"
denote the collection of local gradients.

The average X := 1X1 e RY, and v := 1VF(X)1 € R

e Issue of plain gradients: X! = XtW — nVF(X?)

Suppose that the model parameters have reached consensus and x! = x*
for all i € [n]. Then the plain gradients will let x/*! move away from the
solution x*, i.e., x™1 = (Xt*W); — nVfi(x}) = x* — nVFi(x*) # x*.
Note that & Z i) Vf x*)=0 = Vfi(x*) =

e Benefit of gradient tracking:
Xt = XtW —pVh VI = VIW 4 VF(XH) — VF(XY)
It gives lim; 0o VI =017, x1 = (XIW); — (nVY); = x* — v = x*
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Proof Sketch of BEER
e Compression error: Q! := E[|H! — X!||2, Qf:=E|G!- V{|3.

o Consensus error: Q.= E| X! — %172, QL :=E|V!-vl'|32.
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Proof Sketch of BEER
e Compression error: Q! := E|Ht — X!||2, Qf :=E|G'- V!|3.
o Consensus error: Q.= E| X! — %172, QL :=E|V!-vl'|32.
e We prove that Qf"‘l < (1 —a;))Q2 + b, Vie{l,23,4}.
e We define the Lyapunov function:

=Ef(x") — f* + a1l + 0Qf + 30 + Q.
o We prove that ®,;; < ®, — ZE||V{(x*")||* and then obtain the
convergence result

T-1
1 o 2APe—dr) /1
TZOEHVf(x)H Sn—T_O(7>'
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Conclusion

e We propose a fast compressed algorithm BEER for decentralized
nonconvex optimization.

e We show that BEER converges at a faster rate of O(1/T), improving
the state-of-the-art rate O((G/T)?3), where T is the number of
communication rounds and G measures the data heterogeneity/bounded
gradient assumption.

e In sum, BEER removes the strong assumptions (so it can deal with
heterogeneous data setting) and also enjoys a faster convergence rate (it
matches the rate without communication compression O(1/T)).
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Thanks!

Zhize Li
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