BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression

Zhize Li
Carnegie Mellon University
https://zhizeli.github.io

May 2, 2022
Joint work with

Haoyu Zhao Boyue Li Peter Richtárik Yuejie Chi
Overview

1. Problem

2. Related Work

3. Our Approaches
 - Compression framework
 - Gradient tracking

4. Conclusion
Optimization Problem

We consider the decentralized optimization problem:

\[
\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\},
\]

\(f(x) \): model parameters,
\(n \): number of clients,
\(f_i(x) \): loss function on client \(i \), \(f_i(x) := \mathbb{E}_{\xi \sim D_i} f(x; \xi) \), where \(D_i \) is the local dataset on client \(i \).

Note that each client can only communicate with its neighbors via a predefined network topology (captured by a mixing matrix \(W \)).
Challenges

There are many challenges in decentralized optimization:

- High communication cost
- Heterogeneous/Non-IID data, the data distribution D_i may vary from different clients
- Data privacy
- ...

We will focus on the **communication cost** and **heterogeneous data**.
Related Work

To reduce communication cost, people usually use compressed communication (e.g., Alistarh et al. (2017); Stich et al. (2018); Koloskova et al. (2019); Richtárik et al. (2021)).

Definition (compression operator)

A randomized map $C : \mathbb{R}^d \mapsto \mathbb{R}^d$ is an α-compression operator if for all $x \in \mathbb{R}^d$, it satisfies

$$\mathbb{E}[\|C(x) - x\|^2] \leq (1 - \alpha)\|x\|^2.$$

(2)

In particular, no compression ($C(x) \equiv x$) implies $\alpha = 1$.
Related Work

To reduce communication cost, people usually use **compressed communication** (e.g., Alistarh et al. (2017); Stich et al. (2018); Koloskova et al. (2019); Richtárik et al. (2021)).

Definition (compression operator)

A randomized map $C : \mathbb{R}^d \mapsto \mathbb{R}^d$ is an α-compression operator if for all $x \in \mathbb{R}^d$, it satisfies

$$
\mathbb{E}[\|C(x) - x\|^2] \leq (1 - \alpha)\|x\|^2.
$$

(2)

In particular, no compression ($C(x) \equiv x$) implies $\alpha = 1$.

Examples: $\text{random}_k(x) = x \odot u$ (where u is a uniformly random binary vector with k nonzero entries, \odot denotes element-wise product) satisfies (2) with $\alpha = k/d$. $\text{top}_k(x)$ also satisfies (2) with $\alpha = k/d$.
Related Work

Although previous works reduce the communication cost via compression, they achieve **slow convergence rates** (need more communication rounds) and require **bounded gradient/dissimilarity assumption** (do not suit for heterogeneous data setting)
Related Work

Although previous works reduce the communication cost via compression, they achieve \textit{slow convergence rates} (need more communication rounds) and require \textit{bounded gradient/dissimilarity assumption} (do not suit for heterogeneous data setting).

Recall the problem here: \(\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\} \), where \(f_i(x) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} f(x; \xi_i) \), and \(\mathcal{D}_i \) is the local dataset on client \(i \).
Related Work

Although previous works reduce the communication cost via compression, they achieve slow convergence rates (need more communication rounds) and require bounded gradient/dissimilarity assumption (do not suit for heterogeneous data setting).

Recall the problem here: $\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$, where $f_i(x) := \mathbb{E}_{\xi_i \sim \mathcal{D}_i} f(x; \xi_i)$, and \mathcal{D}_i is the local dataset on client i.

- **Bounded gradient:** $\mathbb{E}_{\xi_i \sim \mathcal{D}_i} \| \nabla f(x; \xi_i) \|^2 \leq G^2$
- **Bounded dissimilarity:** $\mathbb{E}_i \| \nabla f_i(x) - \nabla f(x) \|^2 \leq G^2$
Result Comparison

Table: Decentralized nonconvex optimization with communication compression

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Convergence rate</th>
<th>Strong assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>SQuARM-SGD (Singh et al., 2021)</td>
<td>$O \left(\frac{1}{\sqrt{nT}} + \frac{nG^2}{T} \right)$</td>
<td>Bounded Gradient</td>
</tr>
<tr>
<td>DeepSqueeze (Tang et al., 2019)</td>
<td>$O \left(\left(\frac{G}{T} \right)^{2/3} \right)$</td>
<td>Bounded Dissimilarity</td>
</tr>
<tr>
<td>CHOCO-SGD (Koloskova et al., 2019)</td>
<td>$O \left(\left(\frac{G}{T} \right)^{2/3} \right)$</td>
<td>Bounded Gradient</td>
</tr>
<tr>
<td>BEER (this paper)</td>
<td>$O \left(\frac{1}{T} \right)$</td>
<td>–</td>
</tr>
</tbody>
</table>

T: number of communication rounds
n: total number of clients
G: bounded gradient/dissimilarity assumption

$$ (\mathbb{E}_{\xi_i \sim D_i} \| \nabla f(x; \xi_i) \|^2 \leq G^2 \text{ or } \mathbb{E}_i \| \nabla f_i(x) - \nabla f(x) \|^2 \leq G^2) $$
Our Approaches

CHOCO-SGD (Koloskova et al., 2019): $O\left(\left(\frac{G}{T}\right)^{2/3}\right)$ vs. BEER: $O\left(\frac{1}{T}\right)$

- Improving $O(1/T^{2/3})$ to $O(1/T)$:

CHOCO-SGD uses the original Error Feedback (EF) compression framework (Seide et al., 2014), while **BEER** adopts a better EF21 compression framework (Richtárik et al., 2021).
Our Approaches

CHOCO-SGD (Koloskova et al., 2019): $O\left(\left(\frac{G}{T}\right)^{2/3}\right)$ vs. BEER: $O\left(\frac{1}{T}\right)$

- Improving $O(1/T^{2/3})$ to $O(1/T)$:

 CHOCO-SGD uses the original Error Feedback (EF) compression framework (Seide et al., 2014), while **BEER** adopts a better **EF21** compression framework (Richtárik et al., 2021).

- Removing bounded gradient/dissimilarity G:

 CHOCO-SGD uses **plain gradients**, while **BEER** adopts the gradient **tracking** idea (Zhu and Martínez (2010); Nedić et al. (2017)).
Direct Compression Framework

- Recall the problem here: $\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\}$.
- Recall the compression operator C, s.t. $\mathbb{E}[\|C(x) - x\|^2] \leq (1 - \alpha)\|x\|^2$.
- We point out that direct compression framework
 $$x^{t+1} = x^t - \eta \frac{1}{n} \sum_{i=1}^{n} C(\nabla f_i(x^t))$$ does not work.
Recall the problem here:
\[\min_{x \in \mathbb{R}^d} \left\{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \right\} \]

Recall the compression operator \(\mathcal{C} \), s.t.
\[\mathbb{E}[\| \mathcal{C}(x) - x \|^2] \leq (1 - \alpha)\|x\|^2. \]

We point out that \textbf{direct compression framework}
\[x^{t+1} = x^t - \eta \frac{1}{n} \sum_{i=1}^{n} \mathcal{C}(\nabla f_i(x^t)) \]
\text{does not work.}

\textbf{A counter-example:} consider \(n = 3 \) and let
\[f_i(x) = (a_i^\top x)^2 + \frac{1}{2}\|x\|^2, \]
where \(a_1 = (-4, 3, 3)^\top, a_2 = (3, -4, 3)^\top \) and \(a_3 = (3, 3, -4)^\top \).
Direct Compression Framework

- Recall the problem here: \(\min_{x \in \mathbb{R}^d} \{ f(x) := \frac{1}{n} \sum_{i=1}^n f_i(x) \} \).
- Recall the compression operator \(C \), s.t. \(\mathbb{E}[\|C(x) - x\|^2] \leq (1 - \alpha)\|x\|^2 \).
- We point out that direct compression framework
 \[x^{t+1} = x^t - \eta \frac{1}{n} \sum_{i=1}^n C(\nabla f_i(x^t)) \]
 does not work.

A counter-example: consider \(n = 3 \) and let \(f_i(x) = (a_i^T x)^2 + \frac{1}{2}\|x\|^2 \), where \(a_1 = (-4, 3, 3)^T \), \(a_2 = (3, -4, 3)^T \) and \(a_3 = (3, 3, -4)^T \).

If algorithm starts with \(x^0 = (b, b, b) \), then \(\nabla f_1(x^0) = b(-15, 13, 13)^T \), \(\nabla f_2(x^0) = b(13, -15, 13)^T \), and \(\nabla f_3(x^0) = b(13, 13, -15)^T \).
Direct Compression Framework

- Recall the problem here: \(\min_{x \in \mathbb{R}^d} \{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \} \).
- Recall the compression operator \(C \), s.t. \(\mathbb{E}[\|C(x) - x\|^2] \leq (1 - \alpha)\|x\|^2 \).
- We point out that **direct compression framework**
 \[x^{t+1} = x^t - \eta \frac{1}{n} \sum_{i=1}^{n} C(\nabla f_i(x^t)) \]
 does not work.

A counter-example: consider \(n = 3 \) and let \(f_i(x) = (a_i^T x)^2 + \frac{1}{2}\|x\|^2 \),
where \(a_1 = (-4, 3, 3)^T \), \(a_2 = (3, -4, 3)^T \) and \(a_3 = (3, 3, -4)^T \).

If algorithm starts with \(x^0 = (b, b, b) \), then \(\nabla f_1(x^0) = b(-15, 13, 13)^T \),
\(\nabla f_2(x^0) = b(13, -15, 13)^T \), and \(\nabla f_3(x^0) = b(13, 13, -15)^T \).

If the compressor is \(\text{top}_1 \), we have \(C(\nabla f_1(x^0)) = b(-15, 0, 0)^T \),
\(C(\nabla f_2(x^0)) = b(0, -15, 0)^T \), \(C(\nabla f_3(x^0)) = b(0, 0, -15)^T \),
Direct Compression Framework

• Recall the problem here: \(\min_{x \in \mathbb{R}^d} \{ f(x) := \frac{1}{n} \sum_{i=1}^{n} f_i(x) \} \).
• Recall the compression operator \(C \), s.t. \(\mathbb{E}[\|C(x) - x\|^2] \leq (1 - \alpha)\|x\|^2 \).
• We point out that direct compression framework
 \[x^{t+1} = x^t - \eta \frac{1}{n} \sum_{i=1}^{n} C(\nabla f_i(x^t)) \]
does not work.

A counter-example: consider \(n = 3 \) and let \(f_i(x) = (a_i^T x)^2 + \frac{1}{2}\|x\|^2 \), where \(a_1 = (-4, 3, 3)^T \), \(a_2 = (3, -4, 3)^T \) and \(a_3 = (3, 3, -4)^T \).
If algorithm starts with \(x^0 = (b, b, b) \), then \(\nabla f_1(x^0) = b(-15, 13, 13)^T \), \(\nabla f_2(x^0) = b(13, -15, 13)^T \), and \(\nabla f_3(x^0) = b(13, 13, -15)^T \).
If the compressor is top1, we have \(C(\nabla f_1(x^0)) = b(-15, 0, 0)^T \), \(C(\nabla f_2(x^0)) = b(0, -15, 0)^T \), \(C(\nabla f_3(x^0)) = b(0, 0, -15)^T \), and the next iteration \(x^1 = x^0 - \eta \frac{1}{3} \sum_{i=1}^{3} C(\nabla f_i(x^0)) = (1 + 5\eta)x^0 \), and then \(x^t = (1 + 5\eta)^t x^0 \) diverges exponentially.
Error Feedback (EF) Compression Framework

EF was first proposed by Seide et al. (2014) as a heuristic, no theoretical understanding until recently (Stich et al. (2018); Alistarh et al. (2018)).

1. Each client $i \in [n]$ sets the zero initial error $e_i^0 = 0$
2. Each client $i \in [n]$ compresses its initial gradient $g_i^0 = C(\gamma \nabla f_i(x^0))$
3. for $t = 0, 1, 2, \ldots$ do
4. Server updates $x^{t+1} = x^t - \frac{1}{n} \sum_{i=1}^{n} g_i^t$
5. for all clients $i = 1, 2, \ldots, n$ do in parallel
6. Compute error: $e_i^{t+1} = e_i^t + \gamma \nabla f_i(x^t) - g_i^t$
 Compress error-compensated gradient g_i^{t+1} and send to server: $g_i^{t+1} = C(e_i^{t+1} + \gamma \nabla f_i(x^{t+1}))$
7. end for
Error Feedback (EF) vs. EF21

To compare them clearly, consider the case $n = 1$ (single node):

EF (Seide et al., 2014)
1. Model update: $x^{t+1} = x^t - g^t$
2. Error: $e^{t+1} = e^t + \gamma \nabla f(x^t) - g^t$
3. Compress error-compensated gradient: $g^{t+1} = C(e^{t+1} + \gamma \nabla f(x^{t+1}))$

EF21 (Richtárik et al., 2021)
1. Model update: $x^{t+1} = x^t - \gamma g^t$
2. Update with a shifted compression: $g^{t+1} = g^t + C(\nabla f(x^{t+1}) - g^t)$
Error Feedback (EF) vs. EF21

To compare them clearly, consider the case \(n = 1 \) (single node):

EF (Seide et al., 2014)
1. Model update: \(x^{t+1} = x^t - g^t \)
2. Error: \(e^{t+1} = e^t + \gamma \nabla f(x^t) - g^t \)
3. Compress error-compensated gradient: \(g^{t+1} = C(e^{t+1} + \gamma \nabla f(x^{t+1})) \)

EF21 (Richtárik et al., 2021)
1. Model update: \(x^{t+1} = x^t - \gamma g^t \)
2. Update with a shifted compression: \(g^{t+1} = g^t + C(\nabla f(x^{t+1}) - g^t) \)

If compressor \(C \) is additive and positively homogeneous, \(\text{EF} = \text{EF21} \).

\[
g^{t+1} = C(e^{t+1} + \gamma \nabla f(x^{t+1})) = C(e^t + \gamma \nabla f(x^t) - g^t + \gamma \nabla f(x^{t+1})) \\
= C(e^t + \gamma \nabla f(x^t)) + C(\gamma \nabla f(x^{t+1}) - g^t) = g^t + C(\gamma \nabla f(x^{t+1}) - g^t).
\]

Let \(g^t \) denote \(\hat{\gamma} \hat{g}^t \), then \(g^{t+1} = \gamma(\hat{g}^t + C(\nabla f(x^t) - \hat{g}^t)) = \gamma \hat{g}^{t+1} \).
Recall Our Approaches

CHOCO-SGD (Koloskova et al., 2019): $O\left(\left(\frac{G}{T}\right)^{2/3}\right)$ vs. BEER: $O\left(\frac{1}{T}\right)$

- Improving $O(1/T^{2/3})$ to $O(1/T)$:
 CHOCO-SGD uses the original Error Feedback (EF) compression framework (Seide et al., 2014), while **BEER** adopts a better **EF21** compression framework (Richtárik et al., 2021).

- Removing bounded gradient/dissimilarity G:
 CHOCO-SGD uses **plain gradients**, while **BEER** adopts the **gradient tracking** idea (Zhu and Martínez (2010); Nedić et al. (2017)).
Algorithm 4 CHOCO-SGD (Koloskova et al., 2019) as Error Feedback

input: Initial values $x_i^{(0)} \in \mathbb{R}^d$ on each node $i \in [n]$, consensus stepsize γ, SGD stepsize η, comm. graph $G = ([n], E)$ and mixing matrix W, initialize $\hat{x}_i^{(0)} = x_i^{(-1)} := 0$, $\forall i \in [n]$

1: for t in $0 \ldots T - 1$ do \{in parallel for all workers $i \in [n]$\}
2: $x_i^{(t)} := x_i^{(t-1)} + \gamma \sum_{j: \{i,j\} \in E} w_{ij} (\hat{x}_j^{(t)} - \hat{x}_i^{(t)})$
3: $v_i^{(t)} = x_i^{(t)} - x_i^{(t-1)} + m_i^{(t)}$
4: $q_i^{(t)} := Q(v_i^{(t)})$
5: $m_i^{(t+1)} = v_i^{(t)} - q_i^{(t)}$
6: for neighbors $j: \{i,j\} \in E$ (including $\{i\} \in E$) do
7: Send $q_i^{(t)}$ and receive $q_j^{(t)}$
8: $\hat{x}_j^{(t+1)} := q_j^{(t)} + \hat{x}_j^{(t)}$
9: end for
10: Sample $\xi_i^{(t)}$, compute gradient $g_i^{(t)} := \nabla F_i(x_i^{(t)}; \xi_i^{(t)})$
11: $x_i^{(t+\frac{1}{2})} := x_i^{(t)} - \eta g_i^{(t)}$
12: end for

< modified gossip averaging
Error Feedback (EF)
< compression
< memory update
< communication
< local update
plain gradients
< stochastic gradient update
Our BEER Algorithm

Algorithm 1 BEER: BEtter compresSion for decentRalized optimization

1: **Input:** Initial point $X^0 = x_0 1^T$, $G^0 = 0$, $H^0 = 0$, $V^0 = \nabla F(X_0)$, step size η, mixing step size γ, minibatch size b

2: **for** $t = 0, 1, \ldots$ **do**

3: $X^{t+1} = X^t + \gamma H^t(W - I) - \eta V^t$

4: $H^{t+1} = H^t + C(X^{t+1} - H^t)$

5: $V^{t+1} = V^t + \gamma G^t(W - I) + \tilde{\nabla}_b F(X^{t+1}) - \tilde{\nabla}_b F(X^t)$

6: $G^{t+1} = G^t + C(V^{t+1} - G^t)$

7: **end for**
Plain Gradients vs. Gradient Tracking

Let $\mathbf{X} := [\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$ denote the collection of parameters from all clients, and

$$\nabla F(\mathbf{X}) := [\nabla f_1(\mathbf{x}_1), \nabla f_2(\mathbf{x}_2), \ldots, \nabla f_n(\mathbf{x}_n)] \in \mathbb{R}^{d \times n}$$

denote the collection of local gradients.

The average $\bar{\mathbf{x}} := \frac{1}{n} \mathbf{X} \mathbf{1} \in \mathbb{R}^d$, and $\bar{\mathbf{v}} := \frac{1}{n} \nabla F(\mathbf{X}) \mathbf{1} \in \mathbb{R}^d$.
Plain Gradients vs. Gradient Tracking

Let \(\mathbf{X} := [\mathbf{x}_1, \mathbf{x}_2, \ldots, \mathbf{x}_n] \in \mathbb{R}^{d \times n} \) denote the collection of parameters from all clients, and \(\nabla F(\mathbf{X}) := [\nabla f_1(\mathbf{x}_1), \nabla f_2(\mathbf{x}_2), \ldots, \nabla f_n(\mathbf{x}_n)] \in \mathbb{R}^{d \times n} \) denote the collection of local gradients.

The average \(\bar{\mathbf{x}} := \frac{1}{n} \mathbf{X} \mathbf{1} \in \mathbb{R}^{d} \), and \(\bar{\mathbf{v}} := \frac{1}{n} \nabla F(\mathbf{X}) \mathbf{1} \in \mathbb{R}^{d} \).

● **Issue of plain gradients:** \(\mathbf{X}^{t+1} = \mathbf{X}^{t} \mathbf{W} - \eta \nabla F(\mathbf{X}^{t}) \)

Suppose that the model parameters have reached consensus and \(\mathbf{x}_i^t = \mathbf{x}^* \) for all \(i \in [n] \). Then the plain gradients will let \(\mathbf{x}_i^{t+1} \) move away from the solution \(\mathbf{x}^* \), i.e.,

\[
\mathbf{x}_i^{t+1} = (\mathbf{X}^{t} \mathbf{W})_i - \eta \nabla f_i(\mathbf{x}_i^t) = \mathbf{x}^* - \eta \nabla f_i(\mathbf{x}^*) \neq \mathbf{x}^*.
\]

Note that

\[
\frac{1}{n} \sum_{j=1}^{n} \nabla f_j(\mathbf{x}^*) = 0 \iff \nabla f_i(\mathbf{x}^*) = 0
\]
Plain Gradients vs. Gradient Tracking

Let $X := [x_1, x_2, \ldots, x_n] \in \mathbb{R}^{d \times n}$ denote the collection of parameters from all clients, and $\nabla F(X) := [\nabla f_1(x_1), \nabla f_2(x_2), \ldots, \nabla f_n(x_n)] \in \mathbb{R}^{d \times n}$ denote the collection of local gradients. The average $\bar{x} := \frac{1}{n}X1 \in \mathbb{R}^d$, and $\bar{v} := \frac{1}{n}\nabla F(X)1 \in \mathbb{R}^d$.

Issue of plain gradients: $X^{t+1} = X^tW - \eta\nabla F(X^t)$

Suppose that the model parameters have reached consensus and $x_i^t = x^*$ for all $i \in [n]$. Then the plain gradients will let x_i^{t+1} move away from the solution x^*, i.e., $x_i^{t+1} = (X^tW)_i - \eta\nabla f_i(x_i^t) = x^* - \eta\nabla f_i(x^*) \neq x^*$.

Note that $\frac{1}{n} \sum_{j=1}^{n} \nabla f_j(x^*) = 0 \iff \nabla f_i(x^*) = 0$

Benefit of gradient tracking:

$X^{t+1} = X^tW - \eta V^t; \quad V^{t+1} = V^tW + \nabla F(X^{t+1}) - \nabla F(X^t)$

It gives $\lim_{t \to \infty} V^t = \bar{v}^t1^\top$, $x_i^{t+1} = (X^tW)_i - (\eta V^t)_i = x^* - \eta\bar{v}^* = x^*$
Our BEER Algorithm

Algorithm 1 BEER: BEtter comprEssion for decentRalized optimization

1: **Input:** Initial point $X^0 = x_0 1^T$, $G^0 = 0$, $H^0 = 0$, $V^0 = \nabla F(X_0)$, step size η, mixing step size γ, minibatch size b

2: **for** $t = 0, 1, \ldots$ **do**

3: $X^{t+1} = X^t + \gamma H^t (W - I) - \eta V^t$

4: $H^{t+1} = H^t + C(X^{t+1} - H^t)$

5: $V^{t+1} = V^t + \gamma G^t (W - I) + \tilde{\nabla} b F(X^{t+1}) - \tilde{\nabla} b F(X^t)$

6: $G^{t+1} = G^t + C(V^{t+1} - G^t)$

7: **end for**
Proof Sketch of BEER

- **Compression error:** $\Omega_1^t := \mathbb{E} \| H^t - X^t \|_F^2$, $\Omega_2^t := \mathbb{E} \| G^t - V^t \|_F^2$.
- **Consensus error:** $\Omega_3^t := \mathbb{E} \| X^t - \bar{x}^t 1^\top \|_F^2$, $\Omega_4^t := \mathbb{E} \| V^t - \bar{v}^t 1^\top \|_F^2$.

We define the Lyapunov function $\mathcal{L}_t := \mathbb{E} f(x_t) + c_1^t + c_2^t + c_3^t + c_4^t$. We prove that \mathcal{L}_t decreases and then obtain the convergence result $\mathcal{T} \mathcal{X}_t = 0 \implies \mathcal{T} \mathcal{F} = O_{1\mathcal{T}}$.
Proof Sketch of BEER

- Compression error: $\Omega_1^t := \mathbb{E}\|H^t - X^t\|_F^2$, $\Omega_2^t := \mathbb{E}\|G^t - V^t\|_F^2$.
- Consensus error: $\Omega_3^t := \mathbb{E}\|X^t - \bar{x}^t\|_F^2$, $\Omega_4^t := \mathbb{E}\|V^t - \bar{v}^t\|_F^2$.
- We prove that $\Omega_i^{t+1} \leq (1 - a_i)\Omega_i^t + b_i$, $\forall i \in \{1, 2, 3, 4\}$.

Zhize Li (CMU)
Proof Sketch of BEER

- Compression error: \(\Omega_1^t := \mathbb{E}\|H^t - X^t\|_F^2, \quad \Omega_2^t := \mathbb{E}\|G^t - V^t\|_F^2. \)
- Consensus error: \(\Omega_3^t := \mathbb{E}\|X^t - \bar{x}^t1^\top\|_F^2, \quad \Omega_4^t := \mathbb{E}\|V^t - \bar{v}^t1^\top\|_F^2. \)
- We prove that \(\Omega_i^{t+1} \leq (1 - a_i)\Omega_i^t + b_i, \quad \forall i \in \{1, 2, 3, 4\}. \)
- We define the Lyapunov function:
 \[
 \Phi_t = \mathbb{E}f(\bar{x}^t) - f^* + c_1\Omega_1^t + c_2\Omega_2^t + c_3\Omega_3^t + c_4\Omega_4^t.
 \]
Proof Sketch of BEER

- Compression error: \(\Omega_1^t := \mathbb{E}\|H^t - X^t\|^2_F, \quad \Omega_2^t := \mathbb{E}\|G^t - V^t\|^2_F. \)
- Consensus error: \(\Omega_3^t := \mathbb{E}\|X^t - \bar{x}^t1^\top\|^2_F, \quad \Omega_4^t := \mathbb{E}\|V^t - \bar{v}^t1^\top\|^2_F. \)

We prove that \(\Omega_i^{t+1} \leq (1 - a_i)\Omega_i^t + b_i, \quad \forall i \in \{1, 2, 3, 4\}. \)

We define the Lyapunov function:
\[
\Phi_t = \mathbb{E}f(\bar{x}^t) - f^* + c_1\Omega_1^t + c_2\Omega_2^t + c_3\Omega_3^t + c_4\Omega_4^t.
\]

We prove that \(\Phi_{t+1} \leq \Phi_t - \frac{\eta}{2}\mathbb{E}\|\nabla f(\bar{x}^t)\|^2 \) and then obtain the convergence result
\[
\frac{1}{T} \sum_{t=0}^{T-1} \mathbb{E}\|\nabla f(\bar{x}^t)\|^2 \leq \frac{2(\Phi_0 - \Phi_T)}{\eta T} = O\left(\frac{1}{T}\right).
\]
Conclusion

- We propose a fast compressed algorithm BEER for decentralized nonconvex optimization.

- We show that BEER converges at a faster rate of $O(1/T)$, improving the state-of-the-art rate $O((G/T)^{2/3})$, where T is the number of communication rounds and G measures the data heterogeneity/bounded gradient assumption.

- In sum, BEER removes the strong assumptions (so it can deal with heterogeneous data setting) and also enjoys a faster convergence rate (it matches the rate without communication compression $O(1/T)$).
Thanks!

Zhize Li