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More data and Bigger models…
at the expense of Resources: Memory, Computation, Bandwidth, … 

huggingface.co/blog/



Training with large distributed datasets

1. Given a fixed bandwidth allocated for distributed training
purposes, what is the information-theoretic limit on how
quickly you can train a model?

2. What is an efficient training algorithm that can train a
model as fast as (or nearly as fast as) what those limits
dictate?

Two pertinent questions:



Deploying large models at the edge

1. Given a memory-constraint, what is the information-theoretic limit on
the performance when you compress a model?

2. What are some efficient algorithms to compress a model so that the
performance of the compressed model deteriorates as little as possible?

Two more pertinent questions:



Vector Quantization
Distributed Learning under Network Bandwidth constraints: 

Quantize (pseudo) gradients. Compress/Quantize 
a Model to deploy on 
Memory-constrained 

devices

https://towardsdatascience.com/

https://developer.nvidia.com/blog/

Need a practical and efficient vector quantization scheme!



VQ for Learning: Challenges
• VQ must be agnostic to any distributional information.

o Except for very well-structured problems with several
assumptions, statistical information about the vector
entries are not known.

o Fit a distribution? Computationally intensive. Weights
and gradients are constantly changing.

• Universal Vector Quantization: Do not want a complicated
lattice. Ideally, complexity should be linear in dimension.

• Lossy Source Coding: Codebook should be easily available to
decoder.

Given a bit-budget of B bits per dimension, how do we quantize a vector in Rd ?



The problem of bit-allocation
• B-bits per dimension ⟹ dB bits to quantize.

• How to allocate dB bits to d coordinates?
Orders of magnitude 
difference.

• Is it worth designing a sophisticated bit allocation scheme?

o Vectors are constantly changing.

o Hardware implementation of non-uniform quantizers is difficult.

Uniform Quantizers



How do Random Embeddings help?
y: A vector in Rd whose coordinates 
can be arbitrarily large.

Random embedding from Rd to RD
x: A vector in RD whose 
coordinates are equalized.

Gaussian3 Student-t (df = 1)Gaussian5



Quantizing the Random Embeddings

Embedding
Uniformly
Quantize	

Inverse
transform	

With randomized embeddings

Worst-case quantization error is dimension-independent or weak-logarithmic dependence!

(Computational complexity: O(d2)) (Computational complexity: O(d log d))



Part 1
Model Compression



Compressing Linear Models

Worker estimates model 𝜽 and can send it to the server using only dB bits.

(Risk of any quantized model)



Information-Theoretic Limits

Minimax risk:



Optimally Compressing Linear Models

Learning Codes Performance Guarantee
(holds w.h.p.)

Computational 
Complexity Remarks

Random Projections 
on the Unit Sphere

exp (d)
Tight w.r.t.

lower bound.

Democratic Quantized 
Estimation

O (d2)
Optimal 
within 

constant 
factors.

Near-Democratic 
Quantized Estimation

O (d . log d)
Near linear-
time; Mild 

logarithmic 
dependence.



How tight are the Lower and Upper bounds?

W: Identity, 𝜽 : Gaussian W: Perturbed orthonormal, 𝜽 : Gaussian



Compressing Heavy-Tailed Models

W: Perturbed orthonormal, 𝜽 : Gaussian3 W: Perturbed orthonormal, 𝜽 : Student-t (df = 1)



Part 2
Communication-Constrained Distributed Optimization



Iterative First-Order Optimization Protocols

Quantized Gradient

Model iterate
Worker Server

• How to design efficient algorithms to achieve the optimal convergence rate 
when the worker can communicate to the server using only dB bits per round? 



L - smooth and μ - strongly convex objectives

Minimax convergence rate:

Information-theoretic limit
(“Differentially Quantized Gradient Methods”, Chung-Yi 
Lin and Victoria Kostina and Babak Hassibi, 2021)

Optimization
Algorithm Performance Guarantee

Computational 
Complexity

Remarks

DQ-PSGD O (d2)
Optimal within 

constant factors.

Near DQ-PSGD O (d . log d)
Near linear-time; Mild 

logarithmic 
dependence.



General convex and non-smooth objectives

Minimax suboptimality gap:

Information-theoretic limit
(“Limits on Gradient Compression for Stochastic Optimization” 
Prathamesh Mayekar and Himanshu Tyagi, 2020)

Optimization
Algorithm Performance Guarantee

Computational 
Complexity

Remarks

DQ-PSGD O (d2)
Optimal within 

constant factors.

Near DQ-PSGD O (d . log d)
Near linear-time; Mild 

logarithmic 
dependence.



Numerical Results

Least squares: Synthetic data Least squares: MNIST



Numerical Results (contd..)

Support Vector Machine: Synthetic data Support Vector Machine: MNIST



General stochastic compression schemes



Thank you!


