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Model Size (in billions of parameters)
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More data and Bigger models...

at the expense of Resources: Memory, Computation, Bandwidth, ...
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Most intelligence will be at the edge.
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Training with large
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"We both work at home, so we compete
for bandwidth, not closet space.”

distributed datasets
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Two pertinent questions:

Given a fixed bandwidth allocated for distributed training
purposes, what is the information-theoretic limit on how

qguickly you can train a model?

What is an efficient training algorithm that can train a
model as fast as (or nearly as fast as) what those limits

dictate?



Deploying large models at the edge
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Two more pertinent questions:

1. Given a memory-constraint, what is the information-theoretic limit on
the performance when you compress a model?

2. What are some efficient algorithms to compress a model so that the
performance of the compressed model deteriorates as little as possible?



Vector Quantization

Distributed Learning under Network Bandwidth constraints:
Quantize (pseudo) gradients.
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Federated Learning (Source: https://proandroiddev.com/federated-learning-e79e054c33ef)
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Need a practical and efficient vector quantization scheme!



VQ for Learning: Challenges

* VQ must be agnostic to any distributional information.

o Except for very well-structured problems with several
assumptions, statistical information about the vector
entries are not known.

o Fit a distribution? Computationally intensive. Weights
and gradients are constantly changing.

The Encoder The Decoder
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* Lossy Source Coding: Codebook shou e easily available to
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Given a bit-budget of B bits per dimension, how do we quantize a vector in R4 ?



The problem of bit-allocation

B-bits per dimension = dB bits to quantize.

How to allocate dB bits to d coordinates?

Is it worth designing a sophisticated bit allocation scheme?

o Vectors are constantly changing.

16~ Orders of magnitude
1 difference.
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o Hardware implementation of non-uniform quantizers is difficult.
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Uniform Quantizers
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y: A vector in RY whose coordinates

How do Random Embeddings help?

can be arbitrarily large.
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X: A vector in R® whose
coordinates are equalized.
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Quantizing the Random Embeddings

4 Embedding
Y € RY mo—)
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(Computational complexity: O(d log d))

Worst-case quantization error is dimension-independent or weak-logarithmic dependence!



Part 1
Model Compression



Compressing Linear Models

Observations € R" X — WH —l— VvV Noise € R"

Arbitrary measurement matrix € R™*¢ Ground-truth model € R?

Worker estimates model @ and can send it to the server using only dB bits.

0 := arg min. || X — Ws||3 £{8,8) = Ex [_ HH_HH ]
seS . ’

(Risk of any quantized model)



Information-Theoretic Limits

Definition

An (n, d, B)-learning code Q : R” — © is defined to be the composition of encoder and
decoder mappings E and D, such that for any given data X € R", Q(X) = D(E(X)) € ©.

Minimax risk: Rw.Bo.c :=liminf inf sup R(Q(X), 8)
d—oo QELQn.d,.B 9c®

For B> 0,0 >0,c>0, and W e R" xd with minimum and maximum singular values as o,
and o respectively, the asymptotic minimax risk can be lower bounded as:

oo L _clo
02+ 203, 02+ c%0?

RW,B,G,C >




Optimally Compressing Linear Models

' mputational
Learning Codes Performance Guarantee Computatio

(holds w.h.p.) Complexity

Tight w.r.t.
Random F_’rojections r(o ) <« _ o to2 0—2B exp (d) lower bound.
on the Unit Sphere 'V ) = 024202, | 024?020,
Optimal
Democratic Quantized R ) 5 O (d?) within
16KU max 2B
Estimation R (9, 9) < Uzicczf,gn — + a2 constant
factors.
Near linear-
Near-Democratic R (9 g) < 220> | 82/los@d)clol., 22 O (d-log d) time; Mild
Quantized Estimation 7)) = oo, 0% +c20 0z logarithmic

dependence.



MSE

How tight are the Lower and Upper bounds?
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MSE

Compressing Heavy-Tailed Models
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Part 2
Communication-Constrained Distributed Optimization



Iterative First-Order Optimization Protocols

) Quantized Gradient ‘/
Worker . ] Server
Model iterate

« How to design efficient algorithms to achieve the optimal convergence rate
when the worker can communicate to the server using only dB bits per round?



L - smooth and p - strongly convex objectives

- A HxT(W) 2 !
Minimax convergence rate: C(B) = inf limsup sup
m€llp Twoo feFur.p D

Information-theoretic limit

—B
(“Differentially Quantized Gradient Methods”, Chung-Yi C (B ) 2 max{a g 2 }
Lin and Victoria Kostina and Babak Hassibi, 2021)

Optimization Perf G . Computational
Algorlthm errormance Guarantee Complexity

XT —x Optimal within
DQ-PSGD D ) < max{o, ¢ O (d?) constant factors.

o — xR\ R Near linear-time; Mild
Near DQ-PSGD < TD f) < max{o,co\/logd-27"} O (d-log d) logarithmic
dependence.




General convex and non-smooth objectives

Minimax suboptimality gap: E(T, B) . 7r€11111£B (sfué)) Ef( ( )) —_ f(X*)

Information-theoretic limit cDo
(“Limits on Gradient Compression for Stochastic Optimization” E (T B ) il
Prathamesh Mayekar and Himanshu Tyagi, 2020) \/T \/mm{l b }

Optimization Perf G Computational
Algorithm erformance Guarantee Complexity

c1Do Optimal within
DQ-PSGD — \/— \/mm{l B} O (d?) constant factors.
coDo/Ioo d Near linear-time; Mild
Near DQ-PSGD E(T,B) < — = O (d -log d) logarithmic
VTy/min{l, B} dependence.




Numerical Results

Empirical convergence rate
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Classification error
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Numerical Results (contd..)
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General stochastic compression schemes
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Thank you!



