A Simple Formula for the Moments of Unitarily Invariant Matrix Distributions

Stephen Howard¹ and Ali Pezeshki²

¹Defence Science & Technology Group, Australia ²Colorado State University, USA

> CoE Meeting June 2022

- Complex multivariate Gaussian: Modeling baseband signal measurements.
- Complex Wishart and complex inverse Wishart: Sample covariances and inverse sample covariances

$$R = XX^H \text{ and } R^{-1} = (XX^H)^{-1}$$

Complex beta: Likelihood ratios for detection

$$y = \mu H x + J z + n \sim \begin{cases} \mathcal{CN}[Jz, \sigma^2 I], & \mathcal{H}_0 \ (\mu = 0) \\ \mathcal{CN}[\mu H x + Jz, \sigma^2 I], & \mathcal{H}_1 \ (\mu > 0) \end{cases}$$

$$\ell = \frac{y^H P_J^{\perp} E_{JH} P_J^{\perp} y}{y^H P_J^{\perp} (I - E_{JH}) P_J^{\perp} y}$$

- Complex multivariate Gaussian: Modeling baseband signal measurements.
- Complex Wishart and complex inverse Wishart: Sample covariances and inverse sample covariances

$$R = XX^{H}$$
 and $R^{-1} = (XX^{H})^{-1}$

Complex beta: Likelihood ratios for detection

$$y = \mu H x + J z + n \sim \begin{cases} \mathcal{CN}[Jz, \sigma^2 I], & \mathcal{H}_0 \ (\mu = 0) \\ \mathcal{CN}[\mu H x + Jz, \sigma^2 I], & \mathcal{H}_1 \ (\mu > 0) \end{cases}$$

$$\ell = \frac{y^H P_J^{\perp} E_{JH} P_J^{\perp} y}{y^H P_J^{\perp} (I - E_{JH}) P_J^{\perp} y}$$

- Complex multivariate Gaussian: Modeling baseband signal measurements.
- Complex Wishart and complex inverse Wishart: Sample covariances and inverse sample covariances

$$R = XX^{H}$$
 and $R^{-1} = (XX^{H})^{-1}$

Complex beta: Likelihood ratios for detection

$$y = \mu H x + J z + n \sim \begin{cases} \mathcal{CN}[Jz, \sigma^2 I], & \mathcal{H}_0 \ (\mu = 0) \\ \mathcal{CN}[\mu H x + Jz, \sigma^2 I], & \mathcal{H}_1 \ (\mu > 0) \end{cases}$$

$$\ell = \frac{y^H P_J^{\perp} E_{JH} P_J^{\perp} y}{y^H P_J^{\perp} (I - E_{JH}) P_J^{\perp} y}$$

Complex matrix beta:

 Fisher Information in compressed sensing (Pakrooh et al. 2015)

$$y = x(\theta) + n$$
 vs $z = \Phi y$

$$G = \left[\frac{\partial}{\partial \theta_1} x(\theta) \mid \cdots \mid \frac{\partial}{\partial \theta_p} x(\theta) \right]$$

$$F = \frac{1}{\sigma^2} G^H P_{\Phi^H} G$$
 and $CRLB = F^{-1}$.

• Detection statistics in passive radar (Howard et al. 2015)

$$\gamma = \frac{|G|}{\prod_{i=1}^{M} |G_{ii}|}; \quad G = X^H X$$

- Complex matrix beta:
 - Fisher Information in compressed sensing (Pakrooh et al. 2015)

$$y = x(\theta) + n$$
 vs $z = \Phi y$

$$G = \left[\frac{\partial}{\partial \theta_1} x(\theta) \mid \cdots \mid \frac{\partial}{\partial \theta_p} x(\theta) \right]$$

$$F = \frac{1}{\sigma^2} G^H P_{\Phi^H} G$$
 and $CRLB = F^{-1}$.

• Detection statistics in passive radar (Howard et al. 2015)

$$\gamma = \frac{|G|}{\prod_{i=1}^{M} |G_{ii}|}; \quad G = X^H X$$

Calculating Moments

- Select prior work:
 - Multivariate normal: Isserlis (1918)
 - Complex multivariate normal: James (1953); Muirhead (book)
 - Real Wishart and matrix beta: Muirhead (book)
 - Complex Wishart: Maiwald & Kraus (2000);
 Graczyk et al. (2003); Nagar & Gupta (2011).
 - Complex matrix beta: Gupta et al. (2009), Pakrooh et al. (2015)
- Goal: Derive a formula for moments of all complex matrix distributions that can be transformed to a unitarily invariant distribution via conjugation by a fixed matrix.

Overview

- Methodology: Exploiting the relationship between the moments of unitarily invariant distributions and the joint action of the unitary and symmetric groups on $(\mathbb{C}^N)^{\otimes d}$.
- Key: Schur-Weyl duality, which relates the irreducible representations of unitary and symmetric groups.
- Advantage: A moment formula for all complex multivariate unitarily invariant distribution that separates the combinatorial aspect of moment computation from the calculation of a small number of specific distribution dependent moments.
- Closest prior work: Graczyk et al. (2003); Exploits the relationship between moments of the Wishart distribution and the symmetric group.

The Moment Problem

- ullet Q is a complex N imes N matrix-valued random variable with probability distribution F(Q).
- The distribution is unitarily invariant, if for all $V \in \mathcal{U}(N)$, the group of $N \times N$ unitary matrices, VQV^{\dagger} has the same distribution as Q.
- The notation $Q^{\otimes d}$ denotes the tensor power $Q \otimes Q \otimes \cdots \otimes Q$, with d factors.
- View Q as a random linear operator on \mathbb{C}^N and $Q^{\otimes d}$ as a random linear operator on $(\mathbb{C}^N)^{\otimes d}$.
- $\mathsf{E}\left(Q^{\otimes d}\right)$ is a fixed linear operator on $(\mathbb{C}^N)^{\otimes d}$. Its matrix elements include the moments corresponding to all products of matrix elements of Q with d factors.
- Problem: Compute $E(Q^{\otimes d})$.

Group Actions

- ullet Two important group actions can be defined on $(\mathbb{C}^N)^{\otimes d}$.
 - The first is the action of the symmetric group S_d (group of permutations on d letters) on $(\mathbb{C}^N)^{\otimes d}$ defined by

$$L_{\sigma}(\boldsymbol{v}_1 \otimes \cdots \otimes \boldsymbol{v}_d) = \boldsymbol{v}_{\sigma(1)} \otimes \cdots \otimes \boldsymbol{v}_{\sigma(d)}.$$

• The other is the action of the unitary group $\mathcal{U}(N)$ on $(\mathbb{C}^N)^{\otimes d}$ defined by

$$U^{\otimes d}(\boldsymbol{v}_1 \otimes \cdots \otimes \boldsymbol{v}_d) = U\boldsymbol{v}_1 \otimes \cdots \otimes U\boldsymbol{v}_d.$$

• Under these two group actions $(\mathbb{C}^N)^{\otimes d}$ becomes a unitary representation of the product group $\mathcal{U}(N) \times \mathcal{S}_d$.

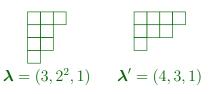
Decomposition into Irreducible Representations

• This representation decomposes into irreducible representations $\{W_{\lambda}\}$:

$$(\mathbb{C}^N)^{\otimes d} = \bigoplus_{\lambda} W_{\lambda}$$

where the sum is over all partitions λ of d with no more than N parts. That is, $\lambda = (\lambda_1, \dots, \lambda_\ell)$, $\ell \leq N$, with the λ_i integers satisfying $\lambda_i \geq \lambda_{i+1}$ and $\lambda_1 + \dots + \lambda_\ell = d$.

• Each λ can be associated with a Young diagram:



Decomposition into Irreducible Representations

- The decomposition $(\mathbb{C}^N)^{\otimes d} = \bigoplus_{\lambda} W_{\lambda}$ means that linear operators in $\mathcal{U}(N) \times \mathcal{S}_d$ can be simultaneously block diagonalized with the blocks labeled by λ .
- Schur-Weyl duality states that

$$W_{\lambda} = V_{\lambda} \otimes S_{\lambda}$$

where V_{λ} are non-equivalent unitary irreducible representations of $\mathcal{U}(N)$ and S_{λ} are non-equivalent unitary irreducible representations of \mathcal{S}_d .

Decomposition into Irreducible Representations

- Associated with each W_{λ} there is a Young orthogonal projection operator Y_{λ} onto that subspace. These
 - satisfy

$$\sum_{\lambda} Y_{\lambda} = I, \quad Y_{\lambda_1} Y_{\lambda_2} = \delta_{\lambda_1, \lambda_2} Y_{\lambda_1}$$

and take the form

$$Y_{\lambda} = \frac{\chi_{\lambda}(e)}{d!} \sum_{\sigma \in \mathcal{S}_d} \chi_{\lambda}(\sigma) L_{\sigma}.$$

The $\chi_{\lambda}(\sigma)$ are real integer coefficients which comprise the irreducible *characters* of \mathcal{S}_d . These can be constructed by standard methods (Hamermesh (1962)).

A Key Observation

- The linear operator $\mathsf{E}(Q^{\otimes d})$ commutes with the action of $\mathcal{U}(N) \times \mathcal{S}_d$ on $(\mathbb{C}^N)^{\otimes d}$.
- So if $\mathsf{E}(Q^{\otimes d})$ is restricted to one of the irreducible representations $W_{\pmb{\lambda}}$, then Schur's Lemma implies that $\mathsf{E}(Q^{\otimes d})$ acts as a multiple, $m_{\pmb{\lambda}}(Q)$, of the identity.
- Then we simply need to calculate this $m_{\lambda}(Q)$, which is a coefficient moment of Q.
- Choose a convenient unit vector ${\boldsymbol w}_{\pmb \lambda} \in W_{\pmb \lambda}$ in each irreducible representation and compute

$$m_{\pmb{\lambda}} = \langle \pmb{w}_{\pmb{\lambda}}, \mathsf{E}\left(Q^{\otimes d}\right) \pmb{w}_{\pmb{\lambda}} \rangle.$$

The Main Result

• The d^{th} order moments of Q are given by

$$\mathsf{E}\left(Q^{\otimes d}\right) = \sum_{\lambda} m_{\lambda} Y_{\lambda}$$

where the coefficient moments $m_{\lambda}(Q)$ are given by

$$m_{\lambda} = \mathsf{E}\left(M_{\lambda'_1}^{\alpha'_1} M_{\lambda'_2}^{\alpha'_2} \dots M_{\lambda'_k}^{\alpha'_k}\right)$$

where M_{ℓ} denotes the leading principal minor of order ℓ for Q, i.e., the determinant of its top left $\ell \times \ell$ block:

$$\det[\langle \boldsymbol{e}_i, Q \boldsymbol{e}_j \rangle]_{i,j=1,\dots,\ell},$$

and $\lambda'=(\lambda'_1^{\alpha'_1},\lambda'_2^{\alpha'_2},\dots,\lambda'_k^{\alpha'_k})$ is the transpose of λ .

The Main Result (Continued)

• If X is a complex matrix-valued random variable with the property that $Q=G^{-1}X(G^{-1})^{\dagger}$ has a unitarily invariant probability distribution for some fixed non-singular matrix G, then

$$\mathsf{E}(X^{\otimes d}) = \sum_{\lambda} m_{\lambda}(Q) \; R_{\lambda}$$

where $R_{\lambda} = Y_{\lambda} R^{\otimes d} Y_{\lambda}$, with $R = GG^{\dagger}$.

Computing Moments

- Calculate a d^{th} order moment of elements of $X = GQG^{\dagger}$.
- For $R = GG^{\dagger}$, matrix elements of R_{λ} are

$$(R_{\lambda})_{IJ} = \frac{\chi_{\lambda}(e)}{d!} \sum_{\sigma \in \mathcal{S}_d} \chi_{\lambda}(\sigma) (R^{\otimes d})_{I\sigma(J)}$$

where $I = (i_1, ..., i_d)$ and $J = (j_1, ..., j_d)$.

We have

$$\mathsf{E}(x_{i_1j_1}\cdots x_{i_dj_d}) = \mathsf{E}(X^{\otimes d})_{IJ} = \sum_{\lambda} m_{\lambda}(Q) \ (R_{\lambda})_{IJ}$$

• For R = I,

$$\mathsf{E}(q_{i_1j_1}\cdots q_{i_dj_d}) = \mathsf{E}(Q^{\otimes d})_{IJ} = \sum_{\lambda} m_{\lambda}(Q) \; \frac{\chi_{\lambda}(e)}{d!} \sum_{\sigma: I = \sigma(J)} \chi_{\lambda}(\sigma)$$

Minor Moments for Some Distributions

- For some complex matrix distributions, the coefficient moments $m_{\lambda}(Q)$ can be computed from just a knowledge of the normalization factors of the distributions.
- Two important examples:

Distribution	m_{λ}
Beta	$\prod_{\ell=1}^k \frac{B_{\lambda_\ell'}(a+\sum_{j=1}^\ell \alpha_j',b)}{B_{\lambda_\ell'}(a+\sum_{j=1}^{\ell-1} \alpha_j',b)}$
Wishart/Gamma	$\prod_{\ell=1}^{k} \frac{\Gamma_{\lambda'_{\ell}}(a + \sum_{j=1}^{\ell} \alpha'_{j})}{\Gamma_{\lambda'_{\ell}}(a + \sum_{j=1}^{\ell-1} \alpha'_{j})}$

 Also applies to the type II complex beta distribution, the inverse complex matrix beta distribution, and the inverse complex gamma/Wishart distributions.

Generalization of Isserlis' Theorem

- Suppose z is a unitarily invariant vector-valued random variable.
- If $y=R^{1/2}z$, with R a positive-definite hermitian matrix, and $Q=zz^{\dagger}$, then there is only a single term $\lambda=(d)$ in the expansion with $m_{(d)}(Q)=\mathsf{E}(|z_1|^{2d})$:

$$\begin{split} \mathsf{E}(y_{i_1}\overline{y}_{j_1}\cdots y_{i_d}\overline{y}_{j_d}) &= R^{\otimes d}\mathsf{E}(Q^{\otimes d}) \\ &= \frac{1}{d!}\mathsf{E}(|z_1|^{2d})\sum_{\sigma\in\mathcal{S}_d} \left(R^{\otimes d}\right)_{I\sigma(J)}. \end{split}$$

• This is a generalization of Isserlis' Theorem (1918) to unitarily invariant vector distributions.

Concluding Remarks

- The formula for the moments of complex multivariate unitarily invariant distributions derived here provides a powerful tool for
 - dealing with the combinatorial aspect of moment computation
 - and separating them from calculations of a small number of specific distribution dependent moments.
- Our approach could be generalized to compute moments of other classes of distributions.