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Complex Unitarily Invariant Distributions

Complex multivariate Gaussian: Modeling baseband signal
measurements.

Complex Wishart and complex inverse Wishart: Sample
covariances and inverse sample covariances

R = XXH and R−1 = (XXH)−1

Complex beta: Likelihood ratios for detection

y = µHx+Jz+n ∼
{

CN [Jz, σ2I], H0 (µ = 0)
CN [µHx+ Jz, σ2I], H1 (µ > 0)

ℓ =
yHP⊥

J EJHP
⊥
J y

yHP⊥
J (I − EJH)P⊥

J y
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Complex Unitarily Invariant Distributions

Complex matrix beta:

Fisher Information in compressed sensing (Pakrooh et al.
2015)

y = x(θ) + n vs z = Φy

G =

[
∂

∂θ1
x(θ) | · · · | ∂

∂θp
x(θ)

]
F =

1

σ2
GHPΦHG and CRLB = F−1.

Detection statistics in passive radar (Howard et al. 2015)

γ =
|G|∏M

i=1 |Gii|
; G = XHX
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Calculating Moments

Select prior work:

Multivariate normal: Isserlis (1918)
Complex multivariate normal: James (1953); Muirhead
(book)
Real Wishart and matrix beta: Muirhead (book)
Complex Wishart: Maiwald & Kraus (2000);
Graczyk et al. (2003); Nagar & Gupta (2011).

Complex matrix beta: Gupta et al. (2009), Pakrooh et
al. (2015)

Goal: Derive a formula for moments of all complex matrix
distributions that can be transformed to a unitarily
invariant distribution via conjugation by a fixed matrix.
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Overview

Methodology: Exploiting the relationship between the
moments of unitarily invariant distributions and the joint
action of the unitary and symmetric groups on (CN)⊗d.

Key: Schur-Weyl duality, which relates the irreducible
representations of unitary and symmetric groups.

Advantage: A moment formula for all complex
multivariate unitarily invariant distribution that separates
the combinatorial aspect of moment computation from
the calculation of a small number of specific distribution
dependent moments.

Closest prior work: Graczyk et al. (2003); Exploits the
relationship between moments of the Wishart distribution
and the symmetric group.
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The Moment Problem

Q is a complex N ×N matrix-valued random variable
with probability distribution F (Q).

The distribution is unitarily invariant, if for all V ∈ U(N),
the group of N ×N unitary matrices, V QV † has the
same distribution as Q.

The notation Q⊗d denotes the tensor power
Q⊗Q⊗ · · · ⊗Q, with d factors.

View Q as a random linear operator on CN and Q⊗d as a
random linear operator on (CN)⊗d.

E
(
Q⊗d

)
is a fixed linear operator on (CN)⊗d. Its matrix

elements include the moments corresponding to all
products of matrix elements of Q with d factors.

Problem: Compute E
(
Q⊗d

)
.
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Group Actions

Two important group actions can be defined on (CN)⊗d.

The first is the action of the symmetric group Sd (group
of permutations on d letters) on (CN )⊗d defined by

Lσ(v1 ⊗ · · · ⊗ vd) = vσ(1) ⊗ · · · ⊗ vσ(d).

The other is the action of the unitary group U(N) on
(CN )⊗d defined by

U⊗d(v1 ⊗ · · · ⊗ vd) = Uv1 ⊗ · · · ⊗ Uvd.

Under these two group actions (CN)⊗d becomes a unitary
representation of the product group U(N)× Sd.
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Decomposition into Irreducible Representations

This representation decomposes into irreducible
representations {Wλ}:

(CN)⊗d =
⊕
λ

Wλ

where the sum is over all partitions λ of d with no more
than N parts. That is, λ = (λ1, . . . , λℓ), ℓ ≤ N , with the
λi integers satisfying λi ≥ λi+1 and λ1 + · · ·+ λℓ = d.

Each λ can be associated with a Young diagram:

λ = (3, 22, 1) λ′ = (4, 3, 1)
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Decomposition into Irreducible Representations

The decomposition (CN)⊗d =
⊕

λWλ means that linear
operators in U(N)× Sd can be simultaneously block
diagonalized with the blocks labeled by λ.

Schur-Weyl duality states that

Wλ = Vλ ⊗ Sλ

where Vλ are non-equivalent unitary irreducible
representations of U(N) and Sλ are non-equivalent
unitary irreducible representations of Sd.
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Decomposition into Irreducible Representations

Associated with each Wλ there is a Young orthogonal
projection operator Yλ onto that subspace. These

satisfy ∑
λ

Yλ = I, Yλ1Yλ2 = δλ1,λ2Yλ1

and take the form

Yλ =
χλ(e)

d!

∑
σ∈Sd

χλ(σ)Lσ.

The χλ(σ) are real integer coefficients which comprise
the irreducible characters of Sd. These can be
constructed by standard methods (Hamermesh (1962)).
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A Key Observation

The linear operator E(Q⊗d) commutes with the action of
U(N)× Sd on (CN)⊗d.

So if E(Q⊗d) is restricted to one of the irreducible
representations Wλ, then Schur’s Lemma implies that
E(Q⊗d) acts as a multiple, mλ(Q), of the identity.

Then we simply need to calculate this mλ(Q), which is a
coefficient moment of Q.

Choose a convenient unit vector wλ ∈ Wλ in each
irreducible representation and compute

mλ = ⟨wλ,E
(
Q⊗d

)
wλ⟩.
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The Main Result

The dth order moments of Q are given by

E
(
Q⊗d

)
=

∑
λ

mλYλ

where the coefficient moments mλ(Q) are given by

mλ = E
(
M

α′
1

λ′
1
M

α′
2

λ′
2
. . .M

α′
k

λ′
k

)
where Mℓ denotes the leading principal minor of order ℓ
for Q, i.e., the determinant of its top left ℓ× ℓ block:

det[⟨ei, Qej⟩]i,j=1,...,ℓ,

and λ′ = (λ′α′
1

1 , λ′α′
2

2 , . . . , λ′α′
k

k ) is the transpose of λ.
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The Main Result (Continued)

If X is a complex matrix-valued random variable with the
property that Q = G−1X(G−1)† has a unitarily invariant
probability distribution for some fixed non-singular matrix
G, then

E(X⊗d) =
∑
λ

mλ(Q) Rλ

where Rλ = YλR
⊗dYλ, with R = GG†.
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Computing Moments

Calculate a dth order moment of elements of X = GQG†.

For R = GG†, matrix elements of Rλ are

(Rλ)IJ =
χλ(e)

d!

∑
σ∈Sd

χλ(σ)(R
⊗d)Iσ(J)

where I = (i1, . . . , id) and J = (j1, . . . , jd).

We have

E(xi1j1 · · ·xidjd) = E(X⊗d)IJ =
∑
λ

mλ(Q) (Rλ)IJ

For R = I,

E(qi1j1 · · · qidjd) = E(Q⊗d)IJ =
∑
λ

mλ(Q)
χλ(e)

d!

∑
σ:I=σ(J)

χλ(σ)
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Minor Moments for Some Distributions

For some complex matrix distributions, the coefficient
moments mλ(Q) can be computed from just a knowledge
of the normalization factors of the distributions.

Two important examples:

Distribution mλ

Beta
∏k

ℓ=1

Bλ′
ℓ
(a+

∑ℓ
j=1 α

′
j ,b)

Bλ′
ℓ
(a+

∑ℓ−1
j=1 α

′
j ,b)

Wishart/Gamma
∏k

ℓ=1

Γλ′
ℓ
(a+

∑ℓ
j=1 α

′
j)

Γλ′
ℓ
(a+

∑ℓ−1
j=1 α

′
j)

Also applies to the type II complex beta distribution, the
inverse complex matrix beta distribution, and the inverse
complex gamma/Wishart distributions.

Howard & Pezeshki Moments of Unitarily Invariant Matrix Distributions



Generalization of Isserlis’ Theorem

Suppose z is a unitarily invariant vector-valued random
variable.

If y = R1/2z, with R a positive-definite hermitian matrix,
and Q = zz†, then there is only a single term λ = (d) in
the expansion with m(d)(Q) = E(|z1|2d):

E(yi1yj1 · · · yidyjd) = R⊗dE(Q⊗d)

=
1

d!
E(|z1|2d)

∑
σ∈Sd

(
R⊗d

)
Iσ(J)

.

This is a generalization of Isserlis’ Theorem (1918) to
unitarily invariant vector distributions.
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Concluding Remarks

The formula for the moments of complex multivariate
unitarily invariant distributions derived here provides a
powerful tool for

dealing with the combinatorial aspect of moment
computation

and separating them from calculations of a small number
of specific distribution dependent moments.

Our approach could be generalized to compute moments
of other classes of distributions.
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