A Simple Formula for the Moments of Unitarily Invariant Matrix Distributions

Stephen Howard ${ }^{1}$ and Ali Pezeshki ${ }^{2}$

${ }^{1}$ Defence Science \& Technology Group, Australia ${ }^{2}$ Colorado State University, USA

CoE Meeting June 2022

Complex Unitarily Invariant Distributions

- Complex multivariate Gaussian: Modeling baseband signal measurements.
- Complex Wishart and complex inverse Wishart: Sample covariances and inverse sample covariances
- Complex beta: Likelihood ratios for detection

Complex Unitarily Invariant Distributions

- Complex multivariate Gaussian: Modeling baseband signal measurements.
- Complex Wishart and complex inverse Wishart: Sample covariances and inverse sample covariances

$$
R=X X^{H} \text { and } R^{-1}=\left(X X^{H}\right)^{-1}
$$

- Complex beta: Likelihood ratios for detection

Complex Unitarily Invariant Distributions

- Complex multivariate Gaussian: Modeling baseband signal measurements.
- Complex Wishart and complex inverse Wishart: Sample covariances and inverse sample covariances

$$
R=X X^{H} \text { and } R^{-1}=\left(X X^{H}\right)^{-1}
$$

- Complex beta: Likelihood ratios for detection

$$
\begin{aligned}
y=\mu H x+J z+n & \sim \begin{cases}\mathcal{C N}\left[J z, \sigma^{2} I\right], & \mathcal{H}_{0}(\mu=0) \\
\mathcal{C N}\left[\mu H x+J z, \sigma^{2} I\right], & \mathcal{H}_{1}(\mu>0)\end{cases} \\
\ell & =\frac{y^{H} P_{J}^{\perp} E_{J H} P_{J}^{\perp} y}{y^{H} P_{J}^{\perp}\left(I-E_{J H}\right) P_{J}^{\perp} y}
\end{aligned}
$$

Complex Unitarily Invariant Distributions

- Complex matrix beta:
- Fisher Information in compressed sensing (Pakrooh et al. 2015)

$$
\begin{gathered}
y=x(\theta)+n \quad \text { vs } \quad z=\Phi y \\
G=\left[\frac{\partial}{\partial \theta_{1}} x(\theta)|\cdots| \frac{\partial}{\partial \theta_{p}} x(\theta)\right] \\
F=\frac{1}{\sigma^{2}} G^{H} P_{\Phi^{H}} G \quad \text { and } \quad \mathrm{CRLB}=F^{-1} .
\end{gathered}
$$

- Detection statistics in passive radar (Howard et al. 2015)

Complex Unitarily Invariant Distributions

- Complex matrix beta:
- Fisher Information in compressed sensing (Pakrooh et al. 2015)

$$
\begin{gathered}
y=x(\theta)+n \quad \text { vs } \quad z=\Phi y \\
G=\left[\frac{\partial}{\partial \theta_{1}} x(\theta)|\cdots| \frac{\partial}{\partial \theta_{p}} x(\theta)\right] \\
F=\frac{1}{\sigma^{2}} G^{H} P_{\Phi^{H}} G \quad \text { and } \quad \mathrm{CRLB}=F^{-1} .
\end{gathered}
$$

- Detection statistics in passive radar (Howard et al. 2015)

$$
\gamma=\frac{|G|}{\prod_{i=1}^{M}\left|G_{i i}\right|} ; \quad G=X^{H} X
$$

Calculating Moments

- Select prior work:
- Multivariate normal: Isserlis (1918)
- Complex multivariate normal: James (1953); Muirhead (book)
- Real Wishart and matrix beta: Muirhead (book)
- Complex Wishart: Maiwald \& Kraus (2000); Graczyk et al. (2003); Nagar \& Gupta (2011).
- Complex matrix beta: Gupta et al. (2009), Pakrooh et al. (2015)
- Goal: Derive a formula for moments of all complex matrix distributions that can be transformed to a unitarily invariant distribution via conjugation by a fixed matrix.

Overview

- Methodology: Exploiting the relationship between the moments of unitarily invariant distributions and the joint action of the unitary and symmetric groups on $\left(\mathbb{C}^{N}\right)^{\otimes d}$.
- Key: Schur-Weyl duality, which relates the irreducible representations of unitary and symmetric groups.
- Advantage: A moment formula for all complex multivariate unitarily invariant distribution that separates the combinatorial aspect of moment computation from the calculation of a small number of specific distribution dependent moments.
- Closest prior work: Graczyk et al. (2003); Exploits the relationship between moments of the Wishart distribution and the symmetric group.

The Moment Problem

- Q is a complex $N \times N$ matrix-valued random variable with probability distribution $F(Q)$.
- The distribution is unitarily invariant, if for all $V \in \mathcal{U}(N)$, the group of $N \times N$ unitary matrices, $V Q V^{\dagger}$ has the same distribution as Q.
- The notation $Q^{\otimes d}$ denotes the tensor power $Q \otimes Q \otimes \cdots \otimes Q$, with d factors.
- View Q as a random linear operator on \mathbb{C}^{N} and $Q^{\otimes d}$ as a random linear operator on $\left(\mathbb{C}^{N}\right)^{\otimes d}$.
- E $\left(Q^{\otimes d}\right)$ is a fixed linear operator on $\left(\mathbb{C}^{N}\right)^{\otimes d}$. Its matrix elements include the moments corresponding to all products of matrix elements of Q with d factors.
- Problem: Compute E $\left(Q^{\otimes d}\right)$.

Group Actions

- Two important group actions can be defined on $\left(\mathbb{C}^{N}\right)^{\otimes d}$.
- The first is the action of the symmetric group \mathcal{S}_{d} (group of permutations on d letters) on $\left(\mathbb{C}^{N}\right)^{\otimes d}$ defined by

$$
L_{\sigma}\left(\boldsymbol{v}_{1} \otimes \cdots \otimes \boldsymbol{v}_{d}\right)=\boldsymbol{v}_{\sigma(1)} \otimes \cdots \otimes \boldsymbol{v}_{\sigma(d)}
$$

- The other is the action of the unitary group $\mathcal{U}(N)$ on $\left(\mathbb{C}^{N}\right)^{\otimes d}$ defined by

$$
U^{\otimes d}\left(\boldsymbol{v}_{1} \otimes \cdots \otimes \boldsymbol{v}_{d}\right)=U \boldsymbol{v}_{1} \otimes \cdots \otimes U \boldsymbol{v}_{d}
$$

- Under these two group actions $\left(\mathbb{C}^{N}\right)^{\otimes d}$ becomes a unitary representation of the product group $\mathcal{U}(N) \times \mathcal{S}_{d}$.

Decomposition into Irreducible Representations

- This representation decomposes into irreducible representations $\left\{W_{\lambda}\right\}$:

$$
\left(\mathbb{C}^{N}\right)^{\otimes d}=\bigoplus_{\lambda} W_{\boldsymbol{\lambda}}
$$

where the sum is over all partitions $\boldsymbol{\lambda}$ of d with no more than N parts. That is, $\boldsymbol{\lambda}=\left(\lambda_{1}, \ldots, \lambda_{\ell}\right), \ell \leq N$, with the λ_{i} integers satisfying $\lambda_{i} \geq \lambda_{i+1}$ and $\lambda_{1}+\cdots+\lambda_{\ell}=d$.

- Each $\boldsymbol{\lambda}$ can be associated with a Young diagram:

$$
\boldsymbol{\lambda}=\left(3,2^{2}, 1\right) \quad \boldsymbol{\lambda}^{\prime}=(4,3,1)
$$

Decomposition into Irreducible Representations

- The decomposition $\left(\mathbb{C}^{N}\right)^{\otimes d}=\bigoplus_{\lambda} W_{\lambda}$ means that linear operators in $\mathcal{U}(N) \times \mathcal{S}_{d}$ can be simultaneously block diagonalized with the blocks labeled by $\boldsymbol{\lambda}$.
- Schur-Weyl duality states that

$$
W_{\boldsymbol{\lambda}}=V_{\boldsymbol{\lambda}} \otimes S_{\boldsymbol{\lambda}}
$$

where V_{λ} are non-equivalent unitary irreducible representations of $\mathcal{U}(N)$ and S_{λ} are non-equivalent unitary irreducible representations of \mathcal{S}_{d}.

Decomposition into Irreducible Representations

- Associated with each W_{λ} there is a Young orthogonal projection operator Y_{λ} onto that subspace. These
- satisfy

$$
\sum_{\boldsymbol{\lambda}} Y_{\boldsymbol{\lambda}}=I, \quad Y_{\boldsymbol{\lambda}_{1}} Y_{\boldsymbol{\lambda}_{2}}=\delta_{\boldsymbol{\lambda}_{1}, \boldsymbol{\lambda}_{2}} Y_{\boldsymbol{\lambda}_{1}}
$$

- and take the form

$$
Y_{\boldsymbol{\lambda}}=\frac{\chi_{\boldsymbol{\lambda}}(e)}{d!} \sum_{\sigma \in \mathcal{S}_{d}} \chi_{\boldsymbol{\lambda}}(\sigma) L_{\sigma}
$$

The $\chi_{\lambda}(\sigma)$ are real integer coefficients which comprise the irreducible characters of \mathcal{S}_{d}. These can be constructed by standard methods (Hamermesh (1962)).

A Key Observation

- The linear operator $\mathrm{E}\left(Q^{\otimes d}\right)$ commutes with the action of $\mathcal{U}(N) \times \mathcal{S}_{d}$ on $\left(\mathbb{C}^{N}\right)^{\otimes d}$.
- So if $\mathrm{E}\left(Q^{\otimes d}\right)$ is restricted to one of the irreducible representations W_{λ}, then Schur's Lemma implies that $\mathrm{E}\left(Q^{\otimes d}\right)$ acts as a multiple, $m_{\boldsymbol{\lambda}}(Q)$, of the identity.
- Then we simply need to calculate this $m_{\boldsymbol{\lambda}}(Q)$, which is a coefficient moment of Q.
- Choose a convenient unit vector $w_{\lambda} \in W_{\lambda}$ in each irreducible representation and compute

$$
m_{\boldsymbol{\lambda}}=\left\langle\boldsymbol{w}_{\boldsymbol{\lambda}}, \mathrm{E}\left(Q^{\otimes d}\right) \boldsymbol{w}_{\boldsymbol{\lambda}}\right\rangle
$$

The Main Result

- The $d^{\text {th }}$ order moments of Q are given by

$$
\mathrm{E}\left(Q^{\otimes d}\right)=\sum_{\lambda} m_{\lambda} Y_{\lambda}
$$

where the coefficient moments $m_{\boldsymbol{\lambda}}(Q)$ are given by

$$
m_{\boldsymbol{\lambda}}=\mathrm{E}\left(M_{\lambda_{1}^{\prime}}^{\alpha_{1}^{\prime}} M_{\lambda_{2}^{\prime}}^{\alpha_{2}^{\prime}} \ldots M_{\lambda_{k}^{\prime}}^{\alpha_{k}^{\prime}}\right)
$$

where M_{ℓ} denotes the leading principal minor of order ℓ for Q, i.e., the determinant of its top left $\ell \times \ell$ block:

$$
\operatorname{det}\left[\left\langle\boldsymbol{e}_{i}, Q \boldsymbol{e}_{j}\right\rangle\right]_{i, j=1, \ldots, \ell},
$$

and $\boldsymbol{\lambda}^{\prime}=\left(\lambda_{1}^{\alpha_{1}^{\prime}}, \lambda_{2}^{\alpha_{2}^{\prime}}, \ldots, \lambda_{k}^{\alpha_{k}^{\prime}}\right)$ is the transpose of $\boldsymbol{\lambda}$.

The Main Result (Continued)

- If X is a complex matrix-valued random variable with the property that $Q=G^{-1} X\left(G^{-1}\right)^{\dagger}$ has a unitarily invariant probability distribution for some fixed non-singular matrix G, then

$$
\mathrm{E}\left(X^{\otimes d}\right)=\sum_{\boldsymbol{\lambda}} m_{\boldsymbol{\lambda}}(Q) R_{\boldsymbol{\lambda}}
$$

where $R_{\lambda}=Y_{\lambda} R^{\otimes d} Y_{\lambda}$, with $R=G G^{\dagger}$.

Computing Moments

- Calculate a $d^{\text {th }}$ order moment of elements of $X=G Q G^{\dagger}$.
- For $R=G G^{\dagger}$, matrix elements of R_{λ} are

$$
\left(R_{\boldsymbol{\lambda}}\right)_{I J}=\frac{\chi_{\boldsymbol{\lambda}}(e)}{d!} \sum_{\sigma \in \mathcal{S}_{d}} \chi_{\boldsymbol{\lambda}}(\sigma)\left(R^{\otimes d}\right)_{I \sigma(J)}
$$

where $I=\left(i_{1}, \ldots, i_{d}\right)$ and $J=\left(j_{1}, \ldots, j_{d}\right)$.

- We have

$$
\mathrm{E}\left(x_{i_{1} j_{1}} \cdots x_{i_{d} j_{d}}\right)=\mathrm{E}\left(X^{\otimes d}\right)_{I J}=\sum_{\boldsymbol{\lambda}} m_{\boldsymbol{\lambda}}(Q)\left(R_{\boldsymbol{\lambda}}\right)_{I J}
$$

- For $R=I$,

$$
\mathrm{E}\left(q_{i_{1} j_{1}} \cdots q_{i_{d} j_{d}}\right)=\mathrm{E}\left(Q^{\otimes d}\right)_{I J}=\sum_{\lambda} m_{\boldsymbol{\lambda}}(Q) \frac{\chi_{\boldsymbol{\lambda}}(e)}{d!} \sum_{\sigma: I=\sigma(J)} \chi_{\boldsymbol{\lambda}}(\sigma)
$$

Minor Moments for Some Distributions

- For some complex matrix distributions, the coefficient moments $m_{\boldsymbol{\lambda}}(Q)$ can be computed from just a knowledge of the normalization factors of the distributions.
- Two important examples:

Distribution	$m_{\boldsymbol{\lambda}}$
Beta	$\prod_{\ell=1}^{k} \frac{B_{\lambda_{\ell}^{\prime}}\left(a+\sum_{j=1}^{\ell} \alpha_{j}^{\prime}, b\right)}{B_{\lambda_{\ell}^{\prime}}\left(a+\sum_{j=1}^{\ell-1} \alpha_{j}^{\prime}, b\right)}$
Wishart/Gamma	$\prod_{\ell=1}^{k} \frac{\Gamma_{\lambda_{\ell}^{\prime}}\left(a+\sum_{j=1}^{\ell} \alpha_{j}^{\prime}\right)}{\Gamma_{\lambda_{\ell}^{\prime}}\left(a+\sum_{j=1}^{\ell-1} \alpha_{j}^{\prime}\right)}$

- Also applies to the type II complex beta distribution, the inverse complex matrix beta distribution, and the inverse complex gamma/Wishart distributions.

Generalization of Isserlis' Theorem

- Suppose z is a unitarily invariant vector-valued random variable.
- If $\boldsymbol{y}=R^{1 / 2} \boldsymbol{z}$, with R a positive-definite hermitian matrix, and $Q=\boldsymbol{z} \boldsymbol{z}^{\dagger}$, then there is only a single term $\boldsymbol{\lambda}=(d)$ in the expansion with $m_{(d)}(Q)=\mathrm{E}\left(\left|z_{1}\right|^{2 d}\right)$:

$$
\begin{aligned}
\mathrm{E}\left(y_{i_{1}} \bar{y}_{j_{1}} \cdots y_{i_{d}} \bar{y}_{j_{d}}\right) & =R^{\otimes d} \mathrm{E}\left(Q^{\otimes d}\right) \\
& =\frac{1}{d!} \mathrm{E}\left(\left|z_{1}\right|^{2 d}\right) \sum_{\sigma \in \mathcal{S}_{d}}\left(R^{\otimes d}\right)_{I \sigma(J)} .
\end{aligned}
$$

- This is a generalization of Isserlis' Theorem (1918) to unitarily invariant vector distributions.

Concluding Remarks

- The formula for the moments of complex multivariate unitarily invariant distributions derived here provides a powerful tool for
- dealing with the combinatorial aspect of moment computation
- and separating them from calculations of a small number of specific distribution dependent moments.
- Our approach could be generalized to compute moments of other classes of distributions.

