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ABSTRACT

We present a new formula for computing arbitrary moments
of unitarily invariant matrix distributions. The Schur-Weyl
duality is used to decompose the expected value of tensor
powers of the random matrices as a linear combination of
projection operators onto unitary irreducible representations.
The coefficients in this combination, which are labeled by
Young diagrams, are expectations of products of determinants
of the random matrices. It is demonstrated in a number of im-
portant cases, including matrix gamma and matrix beta distri-
butions, that these coefficients can be simply computed from
a knowledge of the normalization factors of the distributions.

Index Terms— Unitary invariance, matrix gamma, ma-
trix beta, moments, group representations.

1. INTRODUCTION

Complex multivariate probability distributions arise in many
applications and have been the subject of considerable study
[1, 2, 3]. In signal processing problems arising in applications
such as radar, sonar and communications, the baseband signal
measurements are modeled by multivariate complex Gaussian
distributions. In constructing detectors and estimators in such
applications, and in analysing their expected performance, the
complex Wishart and complex multivariate beta distributions
and their moments naturally arise, as they are the multivariate
analogues of the χ2 and beta distributions. The moments of
the multivariate beta and inverse multivariate beta are also im-
portant in analysing the effect of compressive sensing on de-
tection and estimation performance [4]. Techniques for com-
puting moments of complex Wishart distributions have been
studied in a number of articles [5, 6, 7]. Moments of complex
multivariate beta distributions have been less well studied [8].

The purpose of this paper is to derive a simple general
result which applies to all matrix distributions that can be
transformed to a unitarily invariant distribution through con-
jugation by a fixed matrix. The closest previous work to
ours is [6], where the authors exploit the relationship between
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the moments of the Wishart distribution and the symmetric
groups. Here the simplicity and generality of our results is
achieved by exploiting the relationship between the moments
of unitarily invariant distributions and the joint action of the
unitary and symmetric groups on the space (CN )⊗d. This
is the realm of the Schur-Weyl duality, which intimately re-
lates the irreducible representations of unitary and symmetric
groups [9, 10, 11, 12]. Our approach has the advantage that it
neatly separates combinatorial aspects of the moment calcu-
lation, which are essentially the same for all distributions in
this class, from the calculation of a small number of specific
distributionally dependent moments.

2. THE MOMENT FORMULA

Suppose that Q is a complex N × N matrix-valued random
variable with probability distribution F (Q). The distribution
is unitarily invariant, if for all V ∈ U(N), the group ofN×N
unitary matrices, V QV † has the same distribution as Q.

Our goal here is to consider the computation of the ex-
pected value E

(
Q⊗d

)
for any positive integer d. The notation

Q⊗d denotes the tensor powerQ⊗Q⊗· · ·⊗Q, with d factors.
The elements of E

(
Q⊗d

)
include moments corresponding to

all products of matrix elements of Q containing d factors.
In the usual way, we interpret Q as the matrix of a ran-

dom linear operator on CN , with respect to the standard ba-
sis e1, . . . , eN . Then Q⊗d is a random linear operator on
(CN )⊗d and so E

(
Q⊗d

)
is a fixed linear operator on (CN )⊗d.

With respect to the standard inner product 〈·, ·〉, an orthonor-
mal basis for (CN )⊗d can be constructed as eI = ei1 ⊗
· · · ⊗ eid with multi-index I = (i1, . . . , id), for all choices of
i1, . . . , id from the set {1, . . . N}. The basis {eI} is orthonor-
mal with respect to the inner product on (CN )⊗d defined by

〈v1 ⊗ · · · ⊗ vd,w1 ⊗ · · · ⊗wd〉 =

d∏
j=1

〈vj ,wj〉.

For any two pure elements of the completely anti-symmetric
power ΛdCN , which is a subspace of (CN )⊗d, this inner
product takes the form

〈v1∧· · ·∧vd,w1∧· · ·∧wd〉 = det[〈vi,wj〉]i,j=1,...,d. (1)

Here ∧ denotes the anti-symmetric tensor (or wedge) product.



Two important group actions can be defined on (CN )⊗d.
The first is a group action of the symmetric group Sd (group
of permutations on d letters) defined by Lσ(v1⊗ · · ·⊗vd) =
vσ(1)⊗· · ·⊗vσ(d). The Lσ are unitary operators on (CN )⊗d

(L†σ = Lσ−1 , where † denotes hermitian adjoint). In the {eI}
basis, we have matrix elements

(Lσ)IJ = 〈eI , eσ(J)〉 =

{
1, if I = σ(J),
0, otherwise.

(2)

where the action σ(J) permutes the entries of J according
to σ. The other action is that of the unitary group U(N) on
(CN )⊗d defined by U⊗d(v1⊗· · ·⊗vd) = Uv1⊗· · ·⊗Uvd.

Under these two group actions (CN )⊗d becomes a uni-
tary representation of the product group U(N) × Sd. This
representation decomposes into irreducible representations

(CN )⊗d =
⊕
λ

Wλ (3)

where the sum is over all partitions λ of d with no more
than N parts. The λ above denote partitions of d, that is,
λ = (λ1, . . . , λ`) with the λi integers satisfying λi ≥ λi+1

and λ1 + · · · + λ` = d. What (3) means is that with an ap-
propriate choice of basis for (CN )⊗d, the linear operators in
U(N) × Sd can be simultaneously block diagonalized with
the blocks labeled by the partitions λ. The Schur-Weyl dual-
ity states that Wλ = Vλ ⊗ Sλ, where Vλ are non-equivalent
unitary irreducible representations of U(N) and Sλ are non-
equivalent unitary irreducible representations of Sd.

In terms of partitions, we note that where the λi are re-
peated, such partitions are usually written asλ = (λα1

1 , . . . , λαk

k )
where λi > λi+1 and αi denotes the number of times that
λi is repeated in the partition. In addition, each partition λ
can be associated with a Young diagram [13, 14]. For ex-
ample, for d = 8 the following are two partitions and their
corresponding Young diagrams:

λ = (3, 22, 1) λ′ = (4, 3, 1)

Two partitions are called the transpose of each other if their
Young diagrams are related through reflection in the main di-
agonal. This example shows such a pair.

Associated with each irreducible representation Wλ there
is a Young orthogonal projection operator Yλ onto this sub-
space. The Young projectors satisfy∑

λ

Yλ = I, Yλ1
Yλ2

= δλ1,λ2
Yλ1

(4)

where δ is the Kronecker delta, and take the form

Yλ =
χλ(e)

d!

∑
σ∈Sd

χλ(σ)Lσ. (5)

In (5), the χλ(σ) are real integer coefficients which com-
prise the irreducible characters of Sd. These can be con-
structed by standard methods [9, 11, 12]. The characters sat-
isfy the following relations:

1

d!

∑
σ∈Sd

χλ1
(σµ)χλ2

(σ−1) = δλ1,λ2

χλ1(µ)

χλ1
(e)

and 1
d!

∑
λ χλ(e)χλ(σ) = δe,σ , which imply that (5) satisfies

(4). For d = 2, with rows ordered as {2, 12} and columns
ordered as {e, (1, 2)}, χλ(σ) is(

1 1
1 −1

)
.

For d = 3, with rows ordered as {3, (2, 1), 13} and columns
ordered as {e, (1, 2), (1, 2, 3), (1, 3, 2), (2, 3), (1, 3)}, χλ(σ)
is 1 1 1 1 1 1

2 0 −1 −1 0 0
1 −1 1 1 −1 −1

 .

For other values of d, the matrices of characters can be found
in [11, 12], or computed with a computer algebra package for
larger d.

Returning to the consideration of E(Q⊗d), we first note
that for all σ ∈ Sd, L†σE(Q⊗d)Lσ = E(L†σQ

⊗dLσ) =
E(Q⊗d), since conjugation by Lσ just reorders the tensor
product of Qs. Secondly, for any U ∈ U(N)(

U⊗d
)†

E(Q⊗d)U⊗d = E((U†QU)⊗d) = E(Q⊗d)

due to the unitary invariance of the distribution of Q. Thus,
the linear operator E(Q⊗d) commutes with the action of
U(N) × Sd on (CN )⊗d. Now if E(Q⊗d) is restricted to one
of the irreducible representations Wλ, then Schur’s Lemma
[11, p. 55] implies that E(Q⊗d) acts as a multiple of the
identity. Call this multiple, which is a coefficient moment of
Q, mλ(Q).

Overall, we have E
(
Q⊗d

)
=
∑

λmλ(Q) Yλ, where the
sum is over all partitionsλ of dwith no more thanN parts. To
determine the moments mλ we just need to choose a conve-
nient unit vectorwλ ∈Wλ in each irreducible representation
and compute mλ = 〈wλ,E

(
Q⊗d

)
wλ〉. To aid in the choice

we first note that for any integer `, the leading principal minor
of order ` of Q, using (1), is

M` = 〈e1 ∧ · · · ∧ e`, Q⊗`e1 ∧ · · · ∧ e`〉
= 〈e1 ∧ · · · ∧ e`, (Qe1) ∧ · · · ∧ (Qe`)〉
= det[〈ei, Qej〉]i,j=1,...,`.

(6)

As discussed above, each partition λ, and so each irre-
ducible representation Wλ, is associated with a Young dia-
gram. To specify a basis vector in Wλ we select a standard
Young tableau [11, p. 81], which specifies the symmetries
of the vector under the action of Sd, and in addition, a Weyl



tableau indicating its structure in terms of the basis vectors
e1, . . . eN . Here the Young tableau is chosen such that its
transpose is a canonical Young tableau [9, p. 45]. The Weyl
tableau is chosen to have each column filled with consecu-
tive integers starting with 1 at the top. This procedure gives a
vector in Wλ with a particularly simple structure.

For d = 2:

λ Young tableau Weyl tableau wλ

2 1 2 1 1 e1 ⊗ e1
12 1

2
1
2 e1 ∧ e2

In this case we have

m2 = E(〈e1 ⊗ e1, (Q⊗Q) e1 ⊗ e1〉) = E(q211)

m12 = E(〈e1 ∧ e2, Q⊗Q e1 ∧ e2〉) = E

(∣∣∣∣q11 q12
q21 q22

∣∣∣∣) .
For d = 3:

λ Young tableau Weyl tableau wλ

3 1 2 3 1 1 1 e1 ⊗ e1 ⊗ e1

2, 1 1 3
2

1 1
2 (e1 ∧ e2)⊗ e1

13
1
2
3

1
2
3

e1 ∧ e2 ∧ e3

For which we have

m3 = E(〈e1 ⊗ e1 ⊗ e1, (Q⊗Q⊗Q) e1 ⊗ e1 ⊗ e1〉)
= E(q311),

m12 = E(〈(e1 ∧ e2)⊗ e1, (Q⊗Q⊗Q) (e1 ∧ e2)⊗ e1〉)
= E (〈e1 ∧ e2, (Q⊗Q) e1 ∧ e2〉〈e1, Qe1〉)

= E

(∣∣∣∣q11 q12
q21 q22

∣∣∣∣ q11) ,
m13 = E(〈(e1 ∧ e2 ∧ e3, (Q⊗Q⊗Q) e1 ∧ e2 ⊗ e1〉)

= E

∣∣∣∣∣∣
q11 q12 q13
q21 q22 q23
q31 q32 q33

∣∣∣∣∣∣
 .

In general, we make the choice

wλ =(e1 ∧ · · · ∧ eλ′1)⊗α
′
1 ⊗ (e1 ∧ · · · ∧ eλ′2)⊗α

′
2 ⊗ · · ·

· · · ⊗ (e1 ∧ · · · ∧ eλ′k)⊗α
′
k

where we recall the λ′ = (λ′1
α′1 , . . . , λ′k

α′k) denotes the trans-
pose of λ. Using (6) we get

mλ = 〈wλ,E
(
Q⊗d

)
wλ〉

= E

(
k∏
`=1

〈e1 ∧ · · · ∧ eλ′` , Q
⊗λ′` e1 ∧ · · · ∧ eλ′`〉

α′`

)

= E

(
k∏
`=1

M
α′`
λ′`

)
.

To summarise, we have our main result: The dth order
moments of Q are given by

E
(
Q⊗d

)
=
∑
λ

mλYλ (7)

where the sum is over all partitions λ of d with no more than
N parts and the Yλ are the Young projectors onto the irre-
ducible representations associated with the action of U(N)×
Sd on (CN )⊗d. The coefficient moments mλ(Q) are given by

mλ = E
(
Mα1

λ′1
Mα2

λ′2
. . .Mαk

λ′k

)
(8)

whereλ′ = (λ′
α1

1 , λ′
α2

2 , . . . , λ′
αk

k ) is the transpose to the par-
tition λ and M` denotes the leading principal minor of order
` for Q, i.e., the determinant of the top left `× ` block of Q.

Finally we have an important application of this result:
suppose that X is a complex matrix-valued random variable
with the property that Q = G−1X(G−1)† has a unitarily in-
variant probability distribution for some fixed non-singular
matrix G. Then

E(X⊗d) = R⊗d
∑
λ

mλ(Q) Yλ (9)

where R = GG†.

3. COMPUTING MOMENTS

In this section we consider how to use (7) to compute specific
moments. Suppose that we want to calculate a particular dth

order moment of the elements of Q:

E(qi1j1 · · · qidjd) = E(Q⊗d)IJ

=
∑
λ

m̃λ

∑
σ∈Sd

χλ(σ) (Lσ)IJ

=
∑
λ

m̃λ

∑
σ:I=σ(J)

χλ(σ)

where I = (i1, . . . , id) and J = (j1, . . . , jd) and we have
used (5) along with the normalization m̃λ = χλ(e)

d! mλ. Note
that if I and J have repeated entries there may be more than
one σ such that I = σ(J).

If Q = G−1X(G−1)† has a unitarily invariant distribu-
tion, then, using (9) and (2), we have

E(xi1j1 · · ·xidjd) = E(X⊗d)IJ

=
∑
λ

m̃λ(Q)
∑
σ∈Sd

χλ(σ)
(
R⊗d

)
IK

(Lσ)KJ

=
∑
λ

m̃λ(Q)
∑
σ

χλ(σ)
(
R⊗d

)
I,σ(J)

.

(10)

Equation (10) gives a basis for computing many types of
moments. For example, it is straightforward to compute the



expected value of products of arbitrary linear combinations
of the elements of X . A general linear combination of these
elements takes the form Tr(AX) for some matrix A. Multi-
plying E(X⊗d) by A1 ⊗ · · · ⊗Ad and taking the trace gives

E(Tr(A1X) · · ·Tr(AdX)) = Tr
(
(A1 ⊗ · · · ⊗Ad)E(X⊗d)

)
=
∑
λ

m̃λ(Q)
∑
σ

χλ(σ)
∑
I

((A1R)⊗ · · · ⊗ (AdR))I,σ(I) .

Another application is to compute the expected values of
powers of X , i.e., E(Xd)ij , using the relation E(Xd)ij =∑
K E

(
X⊗d

)
(i,K),(K,j)

, where the sum is over all multi-
indexes K of size d− 1.

4. MINOR MOMENTS FOR SOME DISTRIBUTIONS

We now consider the computation of the coefficient moments
(8) for a number of important multivariate distributions.

Matrix Beta Distributions: Suppose that Q has a com-
plex matrix beta distribution of type I, CBIN (a, b) with pa-
rameters a, b > N − 1, i.e.,

dF (Q) =
1

BN (a, b)
|Q|a−N |I −Q|b−NdQ

where dQ denotes the Lebesgue measure on CN×N . Here
BN (a, b) = ΓN (a)ΓN (b)/ΓN (a+ b) with

ΓN (a) = πN(N−1)/2
N∏
j=1

Γ(a− j + 1).

An important property of the distribution CBIN (a, b) is the
marginal distribution of the top left ` × ` submatrix of Q is
CBI` (a, b) [15, p. 24]. Thus, denoting the top left ` × ` sub-
matrix of Q by Q`, we can write

mλ =
1

BN (a, b)

∫ k∏
`=1

|Qλ′` |
α′` |Q|a−N |I −Q|b−NdQ

=
1

Bλ′1(a, b)

∫ k∏
`=2

|Qλ′` |
α′` |Qλ′1 |

a+α′1−λ
′
1 |I −Qλ′1 |

b−λ′1dQλ′1

=
Bλ′1(a+ α′1, b)

Bλ′1(a, b)

1

Bλ′2(a+ α′1, b)
×

∫ k∏
`=3

|Qλ′` |
α′` |Qλ′2 |

a+α′1+α
′
2−λ

′
2 |I −Qλ′2 |

b−λ′2dQλ′2 .

Continuing in this way we end up with

mλ =

k∏
`=1

Bλ′`(a+
∑`
j=1 α

′
j , b)

Bλ′`(a+
∑`−1
j=1 α

′
j , b)

.

Similar results can be computed for the type II and inverse
complex matrix beta distribution.

Wishart and Matrix Gamma Distributions Suppose
that X is an hermitian positive random matrix having a com-
plex gamma distribution CGN (a,Σ):

dF (X) =
|X|a−N

ΓN (a)|Σ|a
exp(−Tr(Σ−1X))

where a > N−1 and Σ > 0. We begin by making the change
of variable Q = Σ−1/2XΣ−1/2 so

dF ′(Q) =
|Q|a−N

ΓN (a)
exp(−Tr(Q)).

The transformed distribution is unitarily invariant. Using the
fact that if Q ∼ CGN (a, I) then marginal distribution of the
top left ` × ` submatrix of Q is Q` ∼ CG`(a, I). A similar
calculation to the matrix beta distribution gives

mλ =

k∏
`=1

Γλ′`(a+
∑`
j=1 α

′
j)

Γλ′`(a+
∑`−1
j=1 α

′
j)

Again a corresponding result can be computed for the inverse
complex gamma/Wishart distributions.

Unitarily Invariant Vector Distributions: Another in-
teresting application of our result is the following. Suppose z
is a unitarily invariant vector-valued random variable. The
expected value of any product of elements of z and their
complex conjugates is non-zero only if the number of con-
jugate and non-conjugate terms are balanced. This means the
non-zero moments of order d are contained in E(Q⊗d) where
Q = zz† (outer product). This Q and all of its principal sub-
matrices Q` are rank one and as a consequence mλ is zeros
unless λ = (d). All the other moments mλ include principal
minors which are zero. As md = E(|z1|2d), we have

E
(
(zz†)⊗d

)
= E(|z1|2d)Yd =

1

d!
E(|z1|2d)

∑
σ∈Sd

Lσ.

If z = R−1/2y, with R a positive-definite hermitian matrix,

E(yi1yj1 · · · yidyjd) = E
(
(yy†)⊗d

)
IJ

=
1

d!
E(|z1|2d)

∑
σ∈Sd

(
R⊗d

)
Iσ(J)

.
(11)

The simplicity of this result should be compared with that in
[16, 17] for complex Gaussian distributed variables. Equa-
tion (11) can be seen as a generalization of Isserlis’ Theorem
[18] to unitarily invariant vector distributions.

5. CONCLUSION

The formula (7) for the moments of unitarily invariant dis-
tributions derived here provides a powerful tool for dealing
with the combinatorial aspect of moment computation and in
separating them from a small number of specific distribution
dependent moments, for an important set of multivariate dis-
tributions. It is apparent that this approach could be general-
ized to compute moments of other classes of distributions.
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