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Conventional Radar: A Feed-Forward System STL
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Conventional Radar Data Model STL

Radar with array of | elements transmitting waveform s(t)

Radar data often modeled as complex Gaussian: x~CN (a -v,R)

E{x}=a-v ® Signal (Target)
— a=a[s(t)] Target complex amplitude Azimut, Elfvation

— V Target space-time response: VRADAR = V(<p,9,};1),

Doppler
cov(x) =R ® Noise + Interference

— R = Rgystem + Rjammer + Reutter

— Rcuutter = Reutter [S(t)] ™ Depends on Tx Waveform

— Thus, waveform dependence is nonlinear
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Conventional Model: SfL
Adaptive Array Detection Problem

e Radar with array of / elements Example: Radar Environment
- Test data vector x s MOUNTAINS oA
SEA / PLAINS
* Look for presence of target in x:
Hy :x =n, x ~CN(0.R) E N ;
H :x=a-v+n, x~CN(a-v,R) 3 —
1 B— RANGE / TIME DELAY
« Unknowns are o~ and R with possible errorinv 2 >— o mm -
; [>_ E LOCALLY
« [ Training noise only data vectors t

x(1),x(2),...,x(L) L >1
x(k) ~CN(0.R)
Desire viable detection statistic: ¢(x,x(1),x(2),...,x(L),v)

ggi-gmmz Reed, Irving S., John D. Mallett, and Lawrence E. Brennan. "Rapid convergence rate in adaptive arrays." IEEE Transactions D k PRATT SCHOOL of
on Aerospace and Electronic Systems 6 (1974): 853-863. UKE ENGINEERING



Conventional Model: SfL
Summary of Adaptive Detection Algorithms

-Adaptive Matched Filter (AMF) |VHﬁ—1x|2
Robey, et. al. IEEE T-AES 1992 >l tAMF = =

Reed & Chen 1992, Reed et. al. 1974 vHER"lv
*Generalized Likelihood Ratio Test (GLRT) " o tAMF
Kelly IEEE T-AES 1986, Khatri & Rao 1985 > GLRT = (HR-1x
«Adaptive Coherence Estimator (ACE) _ tamr

Conte et. al. IEEE T-AES 1995, > tace = a1

Scharf Asil. 1996, Kraut IEEE T-SP 2001

*Adaptive Sidelobe Blanker (ASB) >|
Kreithen, Baranoski, 1996
Richmond Asilomar 1997& 1998,
Richmond IEEE T-SP 2000

ftamr, tace)

Sample Covariance

[ Each Algorithm is Function of ]- ﬁ _ x(l)xH(l) I x(L)xH (L)
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Inspiration for Cognitive Systems: STL
Echo Location / Human Vision-Perception

- Bats and dolphins emit short sound pulses

to locate food

* Return echoes inform about type of prey,

range and bearing

 Waveform characteristics adapted as bat /

dolphin closes on prey

Higher pulse repetitions

Changes in chirp rates

* Human visual brain

— Cerebral cortex major player in cognition

(Fuster model introduced)
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S. Haykin, "Cognitive radar: a way of the future,”
IEEE Sig. Proc. Mag., January 2006.

SI\ZE, SHAFE & verNés
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Cognitive Radar: Adaptation via a Feedback SystemSTL

Goal: Leverage Al-based techniques toward
full end-to-end control of radar Feedback
1 Haykin’s k. 1 1

Intelligence Detector Tracker _—

Transmitter

Attention
)
3
)
D
Clutter >
Channel o Agile blocks
o]
O Controller
Actions Memory
PAC = Perception-Action-Cycle ‘ Feedback
WICN = Waveform Independent Colored Noise
CoE -9 S. Haykin, “Cognitive radar: a way of the future," IEEE signal processing magazine, vol. 23, no. 1, pp. 30{40, 2006. PRATT SCHOOL of
CDR 06727122 i “Coaniti i i , - Duke encineering
J. Guerci, “Cognitive radar: The knowledge-aided fully adaptive approach.” Artech House radar library. Artech House, 2010.



Motivating Channel Matrix-Based Radar Model SKL

h(t, a)s(a)dai . / h(t,t — 7)s(t — 7)dr %/ h(t,7)s(t — 7)dr
a=t—7,da=—dr, 'h(tr —h(t,t —T)

//H 7,v)s(t — 7)e?*™ dvdr

« Consider Fourier representation h(¢, 7) /H T, 0)e? ™ dy = r(
3

* Thus, r(t) ~ ZZHZ ms(t —7;)e’*™ " Discretizing yields form* r[n ZZ% [i,m]s[n —i]e

Zzﬂn—k m]s[k]e/ 3 =) <ZH[nk mlel ) 's[k] 25" HolK]s(k]
k k

« LTV system output: 7(t) =/

* Note that r[n

k=n—1, z =n—k
Each received data sample is linear transformation of waveform

RO 0]
S T D | I PR . R [r:Hern]
F[NV — 1] o vy | | av -y
Waveform Noise + Interference

i ) Channel Matrix

Linear model can capture dominant effects of doubly spread multipath channel
PRATT SCHOOL of

Duke ENGINEERING
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Channel Matrix-based
Data Model Used in Cognitive Radar*

Target produces scattering component, say H;s

Clutter / reverberation also yields scattering component
— Can model in similar way, i.e. as H.s

Thus, we have the general MIMO radar data model:
X = HTS -+ Hcs + n

— Same TX waveforms produce both target return and clutter
— Scattering propagation paths are different, however, i.e. H; # H.

Simplifies waveform optimization problem

I‘IT n

H¢

Although model is linear, fundamental research questions remained unaddressed

CoE-11
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Cognitive Radar SfL
Target Detection Problem

« Binary hypothesis test:
NoTarget — Hy:x=Hcs+n ,x ~CN(Hes,R)
Target Present = H : x = Hes+Hyps +n ,x ~CN(Hgs + Hrs, R)
- Waveform independent colored noise (WICN) n ~ CN(0.R)
* H;.H-and Rknown
— Likelihood Ratio Test (LRT)

« H;.Heand Runknown = Composite Hypothesis testing
— Average Likelihood Ratio Test (ALRT)*

« Channel matrices modeled as random

— Generalized Likelihood Ratio Test (GLRT)**

« Channel matrices assumed deterministic but unknown during the observation time

GLRT and ALRT establish benchmarks for comparison with machine /

deep learning-based cognitive radar detection, and guides Al architectures

CoE - 12 *T. Ali and C. D. Richmond, “Optimal target detection for random channel matrix-based cognitive radar/sonar,” in 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1-6. PRATT SCHOOL of
CDR 06/27/22 *T_Ali, A. S. Bondre, C. D. Richmond, "Adaptive Detection Algorithms for Channel Matrix-Based Cognitive Radar/Sonar," 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1-6. u e ENGINEERING



Cognitive Radar Data Model: Sf L
Adaptive Detection Problem Formulation

Motivated by GLRT approach taken by Kelly*

K secondary and M primary data vectors, L, = K + M.,

Total received data matrix X € C'*'~
X XL Ix(E)

1
Secondary Data Primary Data
(Clutter + noise only) (May contain target as well)

— [ X X5 € CXK XpechM

« Secondary data » x(k) =Hes(k) +n(k),k=1,... K
« Primary data ®» H:x(k) =Hes(k) + n(k)
Hy : x(k) = Hes(k) + Hys(k) + n(k) } k=R+1 L
- Waveform matrix S = [SENES0RY SOAFNN SN - S8 S§] c =L
« WICN n(k) LL.D with n(k) ~CN(O,R), k= 1.--- L..
o oz *E. J. Kelly, “An adaptive detection algorithm,” IEEE Transactions on Aerospace and Electronic Duke | FRATT scrooLof

systems, no. 2, pp. 115-127, 1986.



GLRT for Cognitive Radar Data Model: STL
UnknownR H; & H

« Channel matrices H . H; and WICN covariance R are all unknown

MaXRr. Hq Hyp fl (X R, H( H7)
maxg.He fo(X: R, H¢)

« The GLRT is given by: Acrrr(X)

« PDF under Hg

L.
(X Ho ) = | A expd = 1, (x(0) — Hes(k) " R (x(k) — Hes(h) |

« PDF under /7,

L.
fi(X;He, Hr, R) = [%;] exp{ S (x(k) — Hes(k)" R (x(k) — Hes(k))

— ik (x(k) = (He + Hy)s(k) " R™ (x(k) — (He + H:r)s(lf))}

CoE - 14
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GLRT for Cognitive Radar Data Model: SfL
Unknown R,H; & H/*

H,
i (X) IXB(SH|T)XH| >
GLRT = NGLRT
XpPSLIDXE + XsP(SFDHXF| <
Hy
* With noiseless input data X, = (Ho + H7)Sp, Xg = HoSg —
—- X 5P SHS 12XH3 nullifies everything in clutter subspace in sec. data Denominator
I I approximates
- Xp‘,Bs Sﬁ I)Xﬁ nullifies everything in clutter+target subspaces in pri. data \R\

— X%s SH |1 ZXHcanceIs everything in clutter subspaces in both pri. and sec. data sets and in

target subspace in pri. data set except the residue: H;Sp[I — SHZ(SSH)~!1S,|SEHHY
« Maximum-likelihood estimates of clutter channel matrices:
Heo = XST(SST)~1 (under Ho) Hey = XsS7(SsSH)~! (under H1)

+ GLRT statistic depends only on measured data and waveform (desire to optimize)

CoE - 15 P(GII) =1 - G( Gy tg! PRATT SCHOOL of
eon o *T. Ali, A. S. Bondre, C. D. Richmond, IEEE Radar Conference, New York, March 21—25, 2022. Duke encineerin



GLRT Architecture for Cognitive Radar Detection STL

X sP(Sg )
) H C(L\H
. s x| B0
S > C :W >
N R v - ~
N R— (P R 'PXESTDXTR
K Secondary samples > T
M Primary samples S B(SHIT)  R-1/2 (%) - (%) |-
Wavclej:gg l;rirrf:;:wl*i;tion Clutter Nulling Jammer Nulling [\ (X)
> GLRT
H S H resno
> H+ T"P < sB(Sg‘l) (*) ) (*) B Czr;npurt]atli%n e
P
o — DD
) o + 1 XPSZB(SP |I) ; NGLRT
] ¢ [HsSp N ’
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Model Aided DNN Design SKL

Signals, Information, Infer

DNN-based
Methods

Model-Aided
DNN Methods

Model-based
Methods

Aware of the statistical model
. Requires smaller amounts

. Model-free and data driven
. Difficulty generalizing and may

. Hybrid approach that employs
data driven techniques aided

of data by knowledge f del overfit

: iti nowledge from model- ,
Sensitive to model bgsed apprgaches «  Requires large amounts of
inaccuracies training set

. Reduce required training

«  Improve convergence rates. *  Sensitive to training

»  Algorithms balance
complexity and optimality

CoE - 18 B Tolooshams , N Shlezinger, D Ba, Y Eldar ,”Tutorial on Model Based Deep Learning in Signal Processing”, ICASSP 2021 PRATT SCHOOL of
COR 06/27/22 Du € ENGINEERING



DNN Based Detector: First Attempts SKL

Signals, Information, Inference, & Learning

* We tried training DNN to classify data as “target bearing” or “target free”:

v

Hr

v

Hq

y

X

P
%

A\ 4

fan
Y

n

v

Detector
Network

* GLRT exploits knowledge of waveform. Thus, we tried:

as
bﬂ

\ 4
@)

y

X

»
>

A 4

LD\

N
%

e
Y

n

Detector
Network

Probability of Detection versus SNR

1.0/
PFA=0.3
PD|
05, — !
0 10 20
SNR (dB)
Probability of Detection versus SNR
1.0
PD / PFA=0.3
071" _—
-10 0 10 20
SNR (dB)

CoE-19
CDR 06/27/22

D k PRATTSCHOOLOf
UKE ENGINEERING



DNN Based Adaptive Detector: Architecture

.
. L
Signals, Information, Inference, & Learning

Threshold f—»

T Xs
Ss > Hq » >
t
Ny
i Detector
K Secondary samples Network
M Primary samples
> HT v X
Sp ] AN
Y
> H(’v NP

« Waveform history provided as input to the DNN

CoE - 20
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DNN Based Adaptive Detector: Network Layers

v

Input Layer

Input Layer

;
-

Normalization Layer

Fully connected Layer with relu
activation activation
| |
| ]
v v

T Concatenate

r

T
[ Normalization Layer
L

e

[ Fully connected Layer with relu
~—

L

Fully connected Layer with relu ]
L activation
s :
Fully connected Layer with softmaxj Determined
activation using

— — Monte Carlo
p€{0.1} Simulations

Threshold }

DNN Network Details

Duke

PRATT SCHOOL of
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Simulation Results SKL

« ULAof | =5 sensors

» Single Point Target with zero doppler and five discrete
point clutter placed randomly relative to the boresight
of antenna array i.e. 0r.0c; ~U(—7/4. 7/4), i =1.2---.5 o ¢

« Zero mean Complex Gaussian Noise

* Rician Model of the Channel Matrices

 Waveform selected from Complex Gaussian
/\ Point Target

distribution @ Point Clutter
@ Sensor

CoE - 22 PRATT SCHOOL of
CDR 06/27/22 Duke ENGINEERING



Simulation Results

SPL

Signals, Information, Inference, & Learning

Probability of Detection, Py

1.0

=
oo

0.6

=
Y

DNN Detector vs GLRT, K=25, M=5

LI

e

- P - o o e e e e
4

- ? -
7 - o e e W

= Pt -

p— P —

= = DNN P =107 |
= = DNN_P -0
p= = DNN P =107
= = DNN P, -0 -
—GLRTP, =107

e GLET P, 107
P GLRT P, =107
f—GLRTP, ~10°
Ll L l L_L_1 I Ll 1
-15 -10 -5 0 5

Element level SNR (dB)

Probability of Detection, P

DNN Detector vs GLRT, K=25, M=10

- DNNP, =107
- DNN P =107
= DNN P, =107
- DNNP =107
G LRT.Pp =107

G LRT,Pp =107

o GLRT Py =107

e G LR, Py = 107

Element level SNR (dB)
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T\ Xs 08
Sg > H D 2 > DNN-Based
4 ~ Clutter Channel
N Cter Shannel ' Matrix Estimation
Clutter Subtraction
> HT ) 4 g
S p— AN Ar :K\XP — by >
\“/ W \/ é 5 > Threshold >
> HC, ]§ R Oé% <
P
Detection
Network

K Secondary samples
M Primary samples
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Model Aided DNN based Detector

y
N

Input Layer

Normalization Layer

n(X, — Hesy)
30 i)
v

=

Input Layer

Normalization Layer

N\ (C

Fully connected Layer with relu

activation

D)
1

Y4

Fully connected Layer with relu

activation

/
S

€

Fully connected Layer with
softmax activation

AN

€ {0.1}

[

Threshold

¥

Detector
Network

Determined
using
Monte Carlo
Simulations

Clutter Channel | 1l b tanh 0
Est. Network Fully connecte'd L'flyer with tan
activation
| . J
e D
Fully connected Layer with tanh
activation
. J
Fully connected Layer with
L linear activation )
Reshape Layer (R2C)
He
CoE - 25 .
COR 08127122 >| DNN Network Details
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Simulation

Results

SPL

Signals, Information, Inference, & Learning

o]
*IIJ

Probability of Detection

Model aided DNN Detector vs GLRT,

K=25, M=5
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p GLR TP, =14
P GER TP =107 -
-
L I L_bL 1l I L1l
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Model Aided DNN based Detector

.
. L
Signals, Infor Inference, & Learning

A 4

Heo =
X XsS§ (SsSE) ™!
Ss o He P— 5 (8s55) Max. Likelihood
3 ~ Clutter Channel
Clutter Channel Est. ‘ . . .
Ng Matrix Estimation
Clutter Subtraction
: HT v 3
S, A Xr e HeSe
\“/ \.IJ \J é 5 > Threshold >
> H(’f 1& _ Oé
P
Detection
Network

K Secondary samples

M Primary samples
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Simulation Results

SPL

Signals, Information, Inference, & Learni

ing

Probability of Detection, P,
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Model aided DNN Detector vs GLRT,
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« Adaptive Target Detection for Cognitive Radar
 Deep Neural Network (DNN) based Target Detection

J >+ Summary
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* DNNs have difficulty generalizing without extensive amounts of training data

Model-based GLRT makes efficient use of available data and performs robustly
— Uses knowledge of waveform

— Performs clutter removal / nulling

— Whitens / nulls waveform independent colored noise

DNN architecture modified to incorporate operations similar to GLRT results in
significant improvement in DNN performance and convergence rate

DNN can ultimately outperform GLRT after full “transfer learning”
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Cognitive Radar Detection: Next Step

.
f L
Signals, I i

Information, Inference, & Learning

»
>

> . Y
S. | u Hcs§m Xg ‘ ;’B(SS |I) (*) (*)
LY ' AN
\ LR N
. n—1/2 >
K Secondary samples | R _
M Primary samples Jammer Nulling
ﬁ—l/Q >
S I Lt PSE) | () (9"
Sp— P AW h i R
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1 "o @S, No

v

Model aided
DNN

Detection
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« T.Aliand C. D. Richmond, “Optimal Target Detection for
Random Channel Matrix-Based Cognitive Radar/Sonar,” in
2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1-6.

Arizona State
University

« T.Ali, A. S. Bondre, C. D. Richmond, "Adaptive Detection
Algorithms for Channel Matrix-Based Cognitive Radar/Sonar,"
2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1-6.

« T.Ali, A. S. Bondre, and C. D. Richmond, "Model-Aided Deep
Learning-Based Target Detection for Channel Matrix-Based
Cognitive Radar/Sonar," The Journal of the Acoustical Society
of America, Vol. 151, No. A100, ASA Meeting, May 2022.
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Questions & Comments
Welcome
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Summary

 DNN-based target detection algorithm for channel matrix-
based Cognitive Radar Framework

* Leveraging knowledge from GLRT derived for same
framework

* Improvement in detection performance compared to model
based GLRT algorithm and data driven DNN algorithm
* Future work:

— Making the architecture more robust to colored noise

— Integrate DRL based transmitter

Probahility of Detection, P,

Probability of Detection, P,

0.8

0.6

04

Hrp

Hq

_________

-10

Elemen

5 0 5
t level SNR (dB)
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Adaptive Matched Filter (AMF) Detector STL

Signals, Information, Inference, & Learning

Form the optimal Neyman-Pearson test statistic, that is, the LRT.
Assume complex Gaussian statistics
Ho: pm, =7 "|R| lexp [-x"R™'x]

H,: PH: = 7~V |R| lexp [—(x —Sv)ER 1 (x — Sv)}

HR—1X|2 Matched

v ;
Filter

vER 1y

Likelihood [mg‘f‘Xle
—_ —

Ratio Test

PH,

(Weiner Soln)

Since R unknown use Sample Covariance:

»V
e ——) Y
Target array response

Known as the Adaptive Matched Filter (AMF) detector I4] Return

CoE - 35 PRATT SCHOOL of
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Generalized Likelihood Ratio Test (GLRT)  SKL

Form the LRT based on the totality of data:

Test Cell—~

A
Trainin [X|X(1)|x(2)| T |X(L)] = Xo
Assume homogeneous complex gaussian statistics
Ho: ppg,=n NED|R|-EHexp [—trR XX ]

Hy: pg, =n NEDR|-EHexp [—trR™H(Xo — M) (X — M)H]
where M =[5d|0]

Maximize likelihood functions over all unknown parameters:

f {rkrglgpm] T 1+ xHR-1x
‘ ' GLRT = = H —1|2
TR PHo 1+xHR 1x — i 11 X
vAR 1y
Known as Kelly’ s / Khatri’s GLRT 4| Return
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Adaptive Coherence Estimator (ACE) STL

* ACE statistic compares energy projected
onto v to total power in x

* Inner product space defined wrt inverse
of data covariance

— in whitened space

>V
Target array response

Hp—1,2
VIR T
‘ tACE = | IA = | cosy|?

vAiRlv . xHR-1x

|< Return
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Classical Sidelobe Blanking

Directional Channel

Power in Target

Direction Output

Threshold
— > > =
<
Input 0
Omni-directional Channel
Threshold
R =
_> > <
a

Typical Comparator Input

Ch1
Ch2

Time

v

Comparator

Total Power from
All Directions

Channel Magnitude Response

, Strong
Signal

PN

0 Angle

E Return
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2-D Adaptive Sidelobe Blanker (ASB) Detector STL

Step 1: Beamforming
taMr > Nam f

Power in Target
Direction

Step 2 : “Sidelobe Blanking”
tAMF > Nace - X" R™'x

Power in Target Total Power From
Direction All Directions

Sidelobe Blanking”

2-D ASB Detector

tac
1~~~ 777 |
Passes ) .
ACE | Region of Declared
; Detections
77ace e ——————— , : :
, E :
Fails \ .
AMF & ACE { Passes AMF !
l :
| R
0 »
namf tAMF

“Directional Beamformer”

|<d| Return
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Model Free DNN based Detector SKL

Signals, Information, Inference, & Learning

Branch 1 & 2 Layer 1: Input Layer with real and imaginary parts of the waveform and data
vectors stacked
Layer 2: Normalization Layer
Layer 3: Dense layer with 128 perceptrons, activation: tanh
Layer 4: Dense layer with 64 perceptrons, activation: tanh

Detection Block Layer 1: Concatenation Layer
Layer 2: Dense layer with 128 perceptrons, activation: relu
Layer 3: Dense layer with 64 perceptrons, activation: relu
Layer 4: Dense with 01 perceptron, activation: softmax

Threshold Determined using Monte Carlo Simulations corresponding to particular PFA
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Model Aided DNN based Detector SKL

Signals, Information, Inference, & Learning

Clutter Channel Estimation  Layer 1: Input Layer with real and imaginary parts of the secondary waveform
Block and data vectors stacked

Layer 2: Normalization Layer

Layer 3: Dense layer with 128 perceptrons, activation: tanh

Layer 4: Dense layer with 64 perceptrons, activation: tanh

Layer 5: Dense layer with 2 x | x [ perceptrons, activation: linear

Layer 6: Reshape Layer

Detection Block Layer 1: Input Layer with real and imaginary parts of the primary waveform and
data vectors stacked
Layer 2: Normalization Layer
Layer 3: Dense layer with 128 perceptrons, activation: relu
Layer 4: Dense layer with 64 perceptrons, activation: relu
Layer 5: Dense with 01 perceptron, activation: softmax

Threshold Determined using Monte Carlo Simulations corresponding to particular PFA
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