Model-Aided Data Driven Adaptive Target Detection for Channel Matrix-Based Cognitive Radar

Touseef Ali, Akshay S. Bondre, and Christ D. Richmond

University Center of Excellence Meeting

June 27th 2022, Monday, 12pm EDT

Outline

- Adaptive Target Detection for Conventional Radar
 - Adaptive Target Detection for Cognitive Radar
 - Deep Neural Network (DNN) based Target Detection
 - **Summary**

Conventional Radar: A Feed-Forward System

Conventional Radar Data Model

- Radar with array of l elements transmitting waveform s(t)
- Radar data often modeled as complex Gaussian: $\mathbf{x} \sim \mathcal{CN}(\alpha \cdot \mathbf{v}, \mathbf{R})$
- $E\{x\} = \alpha \cdot v$ \Rightarrow Signal (Target)
 - $\alpha = \alpha \ [\mathbf{s}(t)]$ Target complex amplitude Azimuth, Elevation
 - v Target space-time response:

$$\mathbf{v}_{RADAR} = \mathbf{v}(\varphi, \theta, f_d),$$
Doppler

$$- \mathbf{R} = \mathbf{R}_{System} + \mathbf{R}_{Jammer} + \mathbf{R}_{Clutter}$$

$$- R_{Clutter} = R_{Clutter}[s(t)] \rightarrow Depends on Tx Waveform$$

- Thus, waveform dependence is nonlinear

Conventional Model: Adaptive Array Detection Problem

- Radar with array of l elements
- Test data vector x
- Look for presence of target in x:

$$H_0: \mathbf{x} = \mathbf{n}, \quad \mathbf{x} \sim \mathcal{CN}(\mathbf{0}, \mathbf{R})$$

 $H_1: \mathbf{x} = \alpha \cdot \mathbf{v} + \mathbf{n}, \quad \mathbf{x} \sim \mathcal{CN}(\alpha \cdot \mathbf{v}, \mathbf{R})$

- Unknowns are $\, \alpha \,$ and ${f R} \,$ with possible error in ${f v} \,$
- L Training noise only data vectors

$$\mathbf{x}(1), \mathbf{x}(2), \dots, \mathbf{x}(L)$$
 $L \ge l$ $\mathbf{x}(k) \sim \mathcal{CN}(\mathbf{0}, \mathbf{R})$

• Desire viable detection statistic: $t(\mathbf{x}, \mathbf{x}(1), \mathbf{x}(2), \dots, \mathbf{x}(L), \mathbf{v})$

Example: Radar Environment

Conventional Model: Summary of Adaptive Detection Algorithms

 Adaptive Matched Filter (AMF) Robey, et. al. IEEE T-AES 1992 Reed & Chen 1992. Reed et. al. 1974

$$t_{AMF} = rac{|\mathbf{v}^H \widehat{\mathbf{R}}^{-1} \mathbf{x}|^2}{\mathbf{v}^H \widehat{\mathbf{R}}^{-1} \mathbf{v}}$$

 Generalized Likelihood Ratio Test (GLRT) Kelly IEEE T-AES 1986, Khatri & Rao 1985

$$t_{GLRT} = \frac{t_{AMF}}{1 + \mathbf{x}^H \hat{\mathbf{R}}^{-1} \mathbf{x}}$$

 Adaptive Coherence Estimator (ACE) Conte et. al. IEEE T-AES 1995. Scharf Asil. 1996, Kraut IEEE T-SP 2001

$$t_{ACE} = rac{t_{AMF}}{\mathbf{x}^H \widehat{\mathbf{R}}^{-1} \mathbf{x}}$$

 Adaptive Sidelobe Blanker (ASB) Kreithen, Baranoski, 1996 Richmond Asilomar 1997& 1998. Richmond IEEE T-SP 2000

$$f(t_{AMF}, t_{ACE})$$

Each Algorithm is Function of Sample Covariance

$$\widehat{\mathbf{R}} = \mathbf{x}(1)\mathbf{x}^H(1) + \dots + \mathbf{x}(L)\mathbf{x}^H(L)$$

Outline

- Adaptive Target Detection for Conventional Radar
- Adaptive Target Detection for Cognitive Radar
 - Deep Neural Network (DNN) based Target Detection
 - Summary

Inspiration for Cognitive Systems: Echo Location / Human Vision-Perception

- Bats and dolphins emit short sound pulses to locate food
- Return echoes inform about type of prey, range and bearing
- Waveform characteristics adapted as bat / dolphin closes on prey
 - Higher pulse repetitions
 - Changes in chirp rates
- Human visual brain
 - Cerebral cortex major player in cognition (Fuster model introduced)

S. Haykin, "Cognitive radar: a way of the future," IEEE Sig. Proc. Mag., January 2006.

Cognitive Radar: Adaptation via a Feedback System STL

CoE - 9 CDR 06/27/22

J. Guerci, "Cognitive radar: The knowledge-aided fully adaptive approach." Artech House radar library. Artech House, 2010.

S. Haykin, "Cognitive radar: a way of the future," IEEE signal processing magazine, vol. 23, no. 1, pp. 30{40, 2006.

Motivating Channel Matrix-Based Radar Model

- LTV system output: $r(t) = \int \tilde{h}(t,a)s(a)da = -\int \tilde{h}(t,t-\tau)s(t-\tau)d\tau \stackrel{\triangle}{=} \int h(t,\tau)s(t-\tau)d\tau$ $a = t-\tau, \ da = -d\tau, \qquad h(t,\tau) \stackrel{\triangle}{=} -\tilde{h}(t,t-\tau)$
- Consider Fourier representation $h(t,\tau)=\int H(\tau,\nu)e^{j2\pi\nu t}d\nu \Longrightarrow r(t)=\int \int H(\tau,\nu)s(t-\tau)e^{j2\pi\nu t}d\nu d\tau$
- Thus, $r(t) \simeq \sum_i \sum_m H_{i,m} s(t-\tau_i) e^{j2\pi\nu_m t}$. Discretizing yields form* $r[n] = \sum_i \sum_m \mathcal{H}[i,m] s[n-i] e^{j\frac{2\pi m}{M}n}$ Note that $r[n] = \sum_k \sum_m \mathcal{H}[n-k,m] s[k] e^{j\frac{2\pi m}{M}n} = \sum_k \left(\sum_m \mathcal{H}[n-k,m] e^{j\frac{2\pi m}{M}n}\right) \cdot s[k] \stackrel{\triangle}{=} \sum_k \tilde{\mathcal{H}}_{\mathbf{n}}[k] s[k]$ $k=n-i,\ i=n-k$
- Each received data sample is linear transformation of waveform:

Linear model can capture dominant effects of doubly spread multipath channel

Channel Matrix-based Data Model Used in Cognitive Radar*

- Target produces scattering component, say H_Ts
- Clutter / reverberation also yields scattering component
 - Can model in similar way, i.e. as $H_C s$
- Thus, we have the general MIMO radar data model:

$$\mathbf{x} = \mathbf{H}_T \mathbf{s} + \mathbf{H}_C \mathbf{s} + \mathbf{n}$$

- Same TX waveforms produce both target return and clutter
- Scattering propagation paths are different, however, i.e. $H_T \neq H_C$
- Simplifies waveform optimization problem
- Although model is linear, fundamental research questions remained unaddressed

Cognitive Radar Target Detection Problem

Binary hypothesis test:

No Target
$$\Longrightarrow H_0: \mathbf{x} = \mathbf{H}_C \mathbf{s} + \mathbf{n}$$
 , $\mathbf{x} \sim \mathcal{CN}(\mathbf{H}_C \mathbf{s}, \mathbf{R})$
Target Present $\Longrightarrow H_1: \mathbf{x} = \mathbf{H}_C \mathbf{s} + \mathbf{H}_T \mathbf{s} + \mathbf{n}$, $\mathbf{x} \sim \mathcal{CN}(\mathbf{H}_C \mathbf{s} + \mathbf{H}_T \mathbf{s}, \mathbf{R})$

- Waveform independent colored noise (WICN) $\, {f n} \sim {\cal C} {\cal N}({f 0},{f R})$
- H_T, H_C and R known
 - Likelihood Ratio Test (LRT)
- H_T, H_C and R unknown → Composite Hypothesis testing
 - Average Likelihood Ratio Test (ALRT)*
 - · Channel matrices modeled as random
 - Generalized Likelihood Ratio Test (GLRT)**
 - Channel matrices assumed deterministic but unknown during the observation time

GLRT and ALRT establish benchmarks for comparison with machine / deep learning-based cognitive radar detection, and guides Al architectures

Cognitive Radar Data Model: Adaptive Detection Problem Formulation

- Motivated by GLRT approach taken by Kelly*
- K secondary and M primary data vectors, $L_s = K + M$.
- Total received data matrix $\mathbf{X} \in \mathbb{C}^{l imes L_s}$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}(1) & \cdots & \mathbf{x}(K) & \mathbf{x}(K+1) & \cdots & \mathbf{x}(L_s) \end{bmatrix} = \begin{bmatrix} \mathbf{X}_S & \mathbf{X}_P \end{bmatrix}$$
Secondary Data
(Clutter + noise only) (May contain target as well)

$$\mathbf{X}_S \in \mathbb{C}^{l \times K} \quad \mathbf{X}_P \in \mathbb{C}^{l \times M}$$

- Secondary data \Rightarrow $\mathbf{x}(k) = \mathbf{H}_C \mathbf{s}(k) + \mathbf{n}(k), k = 1, \dots, K$
- Primary data

$$H_0: \mathbf{x}(k) = \mathbf{H}_C \mathbf{s}(k) + \mathbf{n}(k)$$

$$H_1: \mathbf{x}(k) = \mathbf{H}_C \mathbf{s}(k) + \mathbf{H}_T \mathbf{s}(k) + \mathbf{n}(k)$$

$$k = K + 1, \dots, L_s$$

- Waveform matrix $\mathbf{S} = [\mathbf{s}(1)|\cdots|\mathbf{s}(K)|\mathbf{s}(K+1)|\cdots|\mathbf{s}(L_s)] = [\mathbf{S}_S \quad \mathbf{S}_P] \in \mathbb{C}^{l \times L_s}$
- WICN $\mathbf{n}(k)$ I.I.D with $\mathbf{n}(k) \sim \mathcal{CN}(\mathbf{0}, \mathbf{R})$, $k=1,\cdots,L_s$.

GLRT for Cognitive Radar Data Model: Unknown R, H_T & H_C

- Channel matrices H_C, H_T and WICN covariance R are all unknown
- The GLRT is given by: $\Lambda_{GLRT}(\mathbf{X}) = \frac{\max_{\mathbf{R}, \mathbf{H}_C, \mathbf{H}_T} f_1(\mathbf{X}; \mathbf{R}, \mathbf{H}_C, \mathbf{H}_T)}{\max_{\mathbf{R}, \mathbf{H}_C} f_0(\mathbf{X}; \mathbf{R}, \mathbf{H}_C)}$
- PDF under H_0

$$f_0(\mathbf{X}; \mathbf{H}_C, \mathbf{R}) = \left[\frac{1}{\pi^t |\mathbf{R}|}\right]^{L_s} \exp\left\{-\sum_{k=1}^{L_s} \left(\mathbf{x}(k) - \mathbf{H}_C \mathbf{s}(k)\right)^H \mathbf{R}^{-1} \left(\mathbf{x}(k) - \mathbf{H}_C \mathbf{s}(k)\right)\right\}.$$

• PDF under H_1

$$f_1(\mathbf{X}; \mathbf{H}_C, \mathbf{H}_T, \mathbf{R}) = \left[\frac{1}{\pi^l |\mathbf{R}|}\right]^{L_s} \exp\left\{-\sum_{k=1}^K \left(\mathbf{x}(k) - \mathbf{H}_C \mathbf{s}(k)\right)^H \mathbf{R}^{-1} \left(\mathbf{x}(k) - \mathbf{H}_C \mathbf{s}(k)\right) - \sum_{k=K+1}^{L_s} \left(\mathbf{x}(k) - \left(\mathbf{H}_C + \mathbf{H}_T\right) \mathbf{s}(k)\right)^H \mathbf{R}^{-1} \left(\mathbf{x}(k) - \left(\mathbf{H}_C + \mathbf{H}_T\right) \mathbf{s}(k)\right)\right\}$$

GLRT for Cognitive Radar Data Model: Unknown $R, H_T \& H_C^*$

$$\tilde{\Lambda}_{GLRT}(\mathbf{X}) = \frac{|\mathbf{X}\mathfrak{P}(\mathbf{S}^{H}|\mathbf{I})\mathbf{X}^{H}|}{|\mathbf{X}_{P}\mathfrak{P}(\mathbf{S}^{H}_{P}|\mathbf{I})\mathbf{X}^{H}_{P} + \mathbf{X}_{S}\mathfrak{P}(\mathbf{S}^{H}_{S}|\mathbf{I})\mathbf{X}^{H}_{S}|} \stackrel{>}{<} \tilde{\eta}_{GLRT}$$

- With noiseless input data $X_P = (H_C + H_T)S_P$, $X_S = H_CS_S \Longrightarrow$
 - $-\mathbf{X}_S\mathfrak{P}(\mathbf{S}_S^H|\mathbf{I})\mathbf{X}_S^H$ nullifies everything in clutter subspace in sec. data
 - $\mathbf{X}_P \mathfrak{P}(\mathbf{S}_P^H | \mathbf{I}) \mathbf{X}_P^H$ nullifies everything in clutter+target subspaces in pri. data

Denominator approximates $|{f R}|$

- $\mathbf{X}\mathfrak{P}(\mathbf{S}^H|\mathbf{I})\mathbf{X}^H$ cancels everything in clutter subspaces in both pri. and sec. data sets and in target subspace in pri. data set except the residue: $\mathbf{H}_T\mathbf{S}_P[\mathbf{I}-\mathbf{S}_P^H(\mathbf{S}\mathbf{S}^H)^{-1}\mathbf{S}_P]\mathbf{S}_P^H\mathbf{H}_T^H$
- Maximum-likelihood estimates of clutter channel matrices:

$$\widehat{\mathbf{H}}_{C0} = \mathbf{X}\mathbf{S}^H(\mathbf{S}\mathbf{S}^H)^{-1}$$
 (under H0) $\widehat{\mathbf{H}}_{C1} = \mathbf{X}_S\mathbf{S}_S^H(\mathbf{S}_S\mathbf{S}_S^H)^{-1}$ (under H1)

GLRT statistic depends only on measured data and waveform (desire to optimize)

GLRT Architecture for Cognitive Radar Detection

Duke PRATT SCHOOL of ENGINEERING

Outline

- Adaptive Target Detection for Conventional Radar
- Adaptive Target Detection for Cognitive Radar
- Deep Neural Network (DNN) based Target Detection
 - Summary

Model Aided DNN Design

Model-based Methods

- Aware of the statistical model
- Requires smaller amounts of data
- Sensitive to model inaccuracies
- Algorithms balance complexity and optimality

Model-Aided DNN Methods

- Hybrid approach that employs data driven techniques aided by knowledge from modelbased approaches
- Reduce required training
- Improve convergence rates.

DNN-based Methods

- Model-free and data driven
- Difficulty generalizing and may overfit
- Requires large amounts of training set
- Sensitive to training

DNN Based Detector: First Attempts

We tried training DNN to classify data as "target bearing" or "target free":

• GLRT exploits knowledge of waveform. Thus, we tried:

DNN Based Adaptive Detector: Architecture

Waveform history provided as input to the DNN

DNN Based Adaptive Detector: Network Layers

Simulation Results

- ULA of l=5 sensors
- Single Point Target with zero doppler and five discrete point clutter placed randomly relative to the boresight of antenna array i.e. $\theta_T, \theta_{Ci} \sim \mathcal{U}(-\pi/4, \pi/4), \ i=1,2,\cdots,5$
- Zero mean Complex Gaussian Noise
- Rician Model of the Channel Matrices
- Waveform selected from Complex Gaussian distribution

Simulation Results

Model Aided DNN Detector: Clutter Removal

 $K \ {\bf Secondary} \ {\bf samples}$

M Primary samples

Model Aided DNN based Detector

Simulation Results

Model Aided DNN based Detector

 $K \, {\sf Secondary} \, {\sf samples} \,$

M Primary samples

Simulation Results

Outline

- Adaptive Target Detection for Conventional Radar
- Adaptive Target Detection for Cognitive Radar
- Deep Neural Network (DNN) based Target Detection

Summary

Summary

- DNNs have difficulty generalizing without extensive amounts of training data
- Model-based GLRT makes efficient use of available data and performs robustly
 - Uses knowledge of waveform
 - Performs clutter removal / nulling
 - Whitens / nulls waveform independent colored noise
- DNN architecture modified to incorporate operations similar to GLRT results in significant improvement in DNN performance and convergence rate
- DNN can ultimately outperform GLRT after full "transfer learning"

Cognitive Radar Detection: Next Step

Publications

- T. Ali and C. D. Richmond, "Optimal Target Detection for Random Channel Matrix-Based Cognitive Radar/Sonar," in 2021 IEEE Radar Conference (RadarConf21), 2021, pp. 1–6.
- T. Ali, A. S. Bondre, C. D. Richmond, "Adaptive Detection Algorithms for Channel Matrix-Based Cognitive Radar/Sonar," 2022 IEEE Radar Conference (RadarConf22), 2022, pp. 1-6.
- T. Ali, A. S. Bondre, and C. D. Richmond, "Model-Aided Deep Learning-Based Target Detection for Channel Matrix-Based Cognitive Radar/Sonar," The Journal of the Acoustical Society of America, Vol. 151, No. A100, ASA Meeting, May 2022.

Questions & Comments Welcome

Summary

- DNN-based target detection algorithm for channel matrixbased Cognitive Radar Framework
- Leveraging knowledge from GLRT derived for same framework
- Improvement in detection performance compared to model based GLRT algorithm and data driven DNN algorithm
- Future work:
 - Making the architecture more robust to colored noise
 - Integrate DRL based transmitter

Adaptive Matched Filter (AMF) Detector

Form the optimal Neyman-Pearson test statistic, that is, the LRT.

Assume complex Gaussian statistics

$$H_0: p_{H_0} = \pi^{-N} |\mathbf{R}|^{-1} \exp\left[-\mathbf{x}^H \mathbf{R}^{-1} \mathbf{x}\right]$$

$$H_1: p_{H_1} = \pi^{-N} |\mathbf{R}|^{-1} \exp \left[-(\mathbf{x} - S\mathbf{v})^H \mathbf{R}^{-1} (\mathbf{x} - S\mathbf{v}) \right]$$

$$\begin{array}{c} \longrightarrow & \mathsf{Likelihood} \\ \mathsf{RatioTest} \end{array} = \left[\frac{\sum\limits_{S}^{\max p_{H_1}}}{p_{H_0}} \right] = t_{MF} = \frac{|\mathbf{v}^H \mathbf{R}^{-1} \mathbf{x}|^2}{\mathbf{v}^H \mathbf{R}^{-1} \mathbf{v}} \frac{\textit{Matched}}{\textit{(Weiner Soln)}} \end{array}$$

Since R unknown use Sample Covariance:

$$\sum_{l=1}^L \mathbf{x}(l)\mathbf{x}^H(l) = \widehat{\mathbf{R}} \longrightarrow \mathbf{R} igg| t_{AMF} = rac{|\mathbf{v}^H\widehat{\mathbf{R}}^{-1}\mathbf{x}|^2}{\mathbf{v}^H\widehat{\mathbf{R}}^{-1}\mathbf{v}}$$

Known as the <u>Adaptive Matched Filter (AMF)</u> detector

Generalized Likelihood Ratio Test (GLRT)

Form the LRT based on the totality of data:

Training
$$[\mathbf{x}|\mathbf{x}(1)|\mathbf{x}(2)|\cdots|\mathbf{x}(L)] \stackrel{\triangle}{=} \mathbf{X}_0$$

Assume homogeneous complex gaussian statistics

$$\begin{split} H_0: \quad p_{H_0} &= \pi^{-N(L+1)} |\mathbf{R}|^{-(L+1)} \mathrm{exp} \left[-\mathrm{tr} \mathbf{R}^{-1} \mathbf{X}_0 \mathbf{X}_0^H \right] \\ H_1: \quad p_{H_1} &= \pi^{-N(L+1)} |\mathbf{R}|^{-(L+1)} \mathrm{exp} \left[-\mathrm{tr} \mathbf{R}^{-1} (\mathbf{X}_0 - \mathbf{M}) (\mathbf{X}_0 - \mathbf{M})^H \right] \\ \quad \text{where} \quad \mathbf{M} &= [\ S\mathbf{d} \ | \ \mathbf{0} \] \end{split}$$

Maximize likelihood functions over all unknown parameters:

Known as Kelly's / Khatri's GLRT

Adaptive Coherence Estimator (ACE)

- ACE statistic compares energy projected onto v to total power in x
- Inner product space defined wrt inverse of data covariance
 - in whitened space

$$t_{ACE} = rac{|\mathbf{v}^H \widehat{\mathbf{R}}^{-1} \mathbf{x}|^2}{\mathbf{v}^H \widehat{\mathbf{R}}^{-1} \mathbf{v} \cdot \mathbf{x}^H \widehat{\mathbf{R}}^{-1} \mathbf{x}} = |\cos \psi|^2$$

Classical Sidelobe Blanking

2-D Adaptive Sidelobe Blanker (ASB) Detector

Step 1: Beamforming

$$t_{AMF} > \eta_{amf}$$

Power in Target Direction

Step 2: "Sidelobe Blanking"

$$t_{AMF} > \eta_{ace} \cdot \mathbf{x}^H \widehat{\mathbf{R}}^{-1} \mathbf{x}$$

Power in Target Direction

Total Power From All Directions

Model Free DNN based Detector

DNN Block	Layers
Branch 1 & 2	Layer 1: Input Layer with real and imaginary parts of the waveform and data vectors stacked Layer 2: Normalization Layer Layer 3: Dense layer with 128 perceptrons, activation: tanh Layer 4: Dense layer with 64 perceptrons, activation: tanh
Detection Block	Layer 1: Concatenation Layer Layer 2: Dense layer with 128 perceptrons, activation: relu Layer 3: Dense layer with 64 perceptrons, activation: relu Layer 4: Dense with 01 perceptron, activation: softmax
Threshold	Determined using Monte Carlo Simulations corresponding to particular PFA

Model Aided DNN based Detector

DNN Block	Layers
Clutter Channel Estimation Block	Layer 1: Input Layer with real and imaginary parts of the secondary waveform and data vectors stacked Layer 2: Normalization Layer Layer 3: Dense layer with 128 perceptrons, activation: tanh Layer 4: Dense layer with 64 perceptrons, activation: tanh Layer 5: Dense layer with $2 \times l \times l$ perceptrons, activation: linear Layer 6: Reshape Layer
Detection Block	Layer 1: Input Layer with real and imaginary parts of the primary waveform and data vectors stacked Layer 2: Normalization Layer Layer 3: Dense layer with 128 perceptrons, activation: relu Layer 4: Dense layer with 64 perceptrons, activation: relu Layer 5: Dense with 01 perceptron, activation: softmax
Threshold	Determined using Monte Carlo Simulations corresponding to particular PFA

