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Why distributed?

Distributed data collection everywhere!
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Federated Learning

▶ Federated learning iteratively
learns a shared prediction model
over data samples located across
multiple clients without sharing
the data samples.

▶ Pros:
• Enhanced privacy.
• Reduced communication

overhead.

▶ Cons:
• Communication stragglers.
• Computational stragglers.
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Federated Averaging

The objective:

x∗ = arg min·
x∈Rd

f(x) ≜ arg min·
x∈Rd

1

n

n∑
i=1

fi(x;Zi).

FL with local SGD at clients: Let k ∈ [0, T − 1]

x
(r,k+1)
i = x

(r,k)
i − ηrgi

(
x
(r,k)
i

)
,

where ηr is the local learning rate for round r, and x
(r,0)
i = x(r).

∆xr+1
i = x

(r,T )
j − x(r).

PS aggregation:

x(r+1) = x(r) +
1

n

n∑
i=1

∆xr+1
i .
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Federated Averaging: Intermittent connectivity

PS aggregation:

x(r+1) = x(r) +
1

n

n∑
i=1

∆xr+1
i .

In reality,

x(r+1) = x(r) +
1

n

n∑
i=1

τi(r + 1)∆xr+1
i ,

where τi(r + 1) = 1 if client i can transmit successfully to the PS and
τi(r + 1) = 0 otherwise.
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Overcoming Communication Stragglers via Relaying

PS
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Collaborative Relaying of Local Updates (FL ColRel)

Ni = the set of clients that are connected to client i (neighbors).

Client post-local training stage:

▶ After computing ∆xr+1
i , each client i sends ∆xr+1

i to its neighbors.

▶ Each client i sends a weighted average of its local update and that
of its neighbors:

∆x̃r+1
i =

∑
j∈Ni∪{i}

αij ·∆xr+1
j =

∑
j∈Ni∪{i}

αij

(
x
(r,T )
j − x(r)

)
,

PS aggregation:

x(r+1) = x(r) +
1

n

∑
i∈[n]

τi(r + 1)∆x̃r+1
i .

How should we choose the weights αij?
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How should we choose the weights αij?

Ideally, we would like to choose the weights αij to,

1. Converge to the optimal solution (unbiasedness).

2. Minimize the convergence rate.
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Unbiasedness of Local Updates at the PS

Lemma (Sufficient condition for unbiasedness)

Let αij be such that

E

 ∑
j:j∈Ni∪{i}

τj(r + 1)αji

 = piαii +
∑

j:j∈Ni

pjαji = 1.

Then, for every i ∈ [n]

E

 ∑
j:j∈Ni∪{i}

τj(r + 1)αji∆xr+1
i

∣∣∣∆xr+1
i

 = ∆xr+1
i .

Consequently,

E
[
x(r+1)|{∆xr+1

i },x(r)
]
= x(r) +

1

n

n∑
i=1

∆xi.
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Expected Suboptimality Gap

Theorem

Denote A = (αij)i,j∈[n], and

Nil = (Ni ∪ {i}) ∩ (Nl ∪ {l}),

and

S(p,A) =
∑

i,l∈[n]

∑
j:j∈Nil

pj(1− pj)αjiαjl.

Then(∗),

E
∥∥∥x(r+1) − x⋆

∥∥∥2 = O

(∥∥x(0) − x⋆
∥∥2

r2
+

S(p,A)

r

)
.

(∗) for µ-strongly convex fi with L-Lipschitz continuous gradients, unbiased

stochastic gradients with bounded variance, and ηr = 4µ−1

rT +1
.
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Optimizing the Weights αij

min
A

S(p,A) :=
∑

i,l∈[n]

∑
j:j∈Nil

pj(1− pj)αjiαjl,

s.t.:
∑

j:j∈Ni

pjαji = 1, ∀i ∈ [n],

αji ≥ 0 ∀i, j ∈ [n].

We can show that this problem is convex in A, and solve it using the
Gauss-Seidel method.

At every iteration ℓ we compute Aℓ as follows

A
(ℓ)
i =

{
Â

(ℓ)
i if ℓ mod n+ n · 1{ℓ mod n=0} = i,

A
(ℓ−1)
i otherwise,

(1)
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Optimizing the Weights αij (contd.)

For all j ∈ Ni ∪ {i}:

Â
(ℓ)
ji =


(
−βji +

λi

2(1−pj)

)+
if pj ∈ (0, 1),maxk∈Ni∪{i} pk < 1,

1∑
k∈[n] 1{pk=1,k∈Ni∪{i}}

if pj = 1,

0 otherwise.

.

where,

βji =
∑
l∈Lji

α
(ℓ−1)
jl and Lji = {l : j is a common neighbor of i and l}.

λi is set such that
∑

j:j∈Ni∪{i} pj

(
−βji +

λi

2(1−pj)

)+
= 1.

Interestingly, we get a water-filling solution.
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Numerical Results (1/3)

n = 10 clients, CIFAR-10, ResNet-20, 0.27 M parameters, 10 classes,
T = 8, and learning rate of 0.1.

Figure 1: Homogeneous connectivity with pi = 0.2, ∀i ∈ [n] and FCT.

Rajarshi Saha Collaborative Federated Learning May 16, 2022 14 / 18



Numerical Results (2/3)

p = [0.1, 0.2, 0.3, 0.1, 0.1, 0.5, 0.8, 0.1, 0.2, 0.9].

Figure 2: Heterogeneous connectivity across clients with a ring topology.
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Numerical Results (3/3)

Each client has samples from at most 3 classes.

Figure 3: Non-IID data + global momentum.
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Conclusions and Discussions

▶ Collaborative relaying can solve the problem of communication
stragglers.

▶ Collaborative relaying ensures unbiasedness of the objective function.

▶ Strategically choosing the relaying averaging weights reduces the
convergence rate significantly.

▶ Discussions ...
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Thank you!

Reach out for further discussions: rajsaha@stanford.edu

Extended version (with proofs) on arXiv:
Robust Federated Learning with Connectivity Failures: A Semi-Decentralized
Framework with Collaborative Relaying.
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