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Why distributed?
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Distributed data collection everywhere!
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Federated Learning

» Federated learning iteratively - -
learns a shared prediction model -

over data samples located across / \
multiple clients without sharing / \
the data samples. E o |E

wooe | |- wooe
» Pros:

® Enhanced privacy.

® Reduced communication

overhead. = B
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> Cons: ! i) fu
@ —

® Communication stragglers.
® Computational stragglers.
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Federated Averaging

The objective:

x* = arg min. f(x) £ arg min. *Zfz x; Z;)

x€R4 x€R4

FL with local SGD at clients: Let k € [0, 7 — 1]
Xgr,k+1) _ XZ(_r,k) — n,9; (XZ(_r,k)) ,
where 7). is the local learning rate for round r, and x(r 0 = %),

AX:'H = xgr’T) —x(,

PS aggregation:

1 — )
(r+1) — () + — E AxTTL
X X n L X;
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Federated Averaging: Intermittent connectivity

PS aggregation:
(T+1 _ X(r ZAX7+1

In reality,

(7"+1) — X _|_

3\*—‘

n
E mi(r + 1) Ax; T
=1

where 7;(r 4+ 1) = 1 if client ¢ can transmit successfully to the PS and
7i(r + 1) = 0 otherwise.
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Overcoming Communication Stragglers via Relaying
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Collaborative Relaying of Local Updates (FL ColRel)

N, = the set of clients that are connected to client i (neighbors).

Client post-local training stage:

r+1 r+1

> After computing Ax; ", each client ¢ sends Ax; "~ to its neighbors.

» Each client i sends a weighted average of its local update and that
of its neighbors:

vl r T T
AX +1 Z Qg AXj+1 = Z Q5 (Xg ) — X( )) 5

JEN;U{i} FEN;U{i}
PS aggregation:

x(rtD) = x() 4 = Z 7i(r + 1)AX; T+l

16 [n]

How should we choose the weights o;;?
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How should we choose the weights «;;

Ideally, we would like to choose the weights a;; to,
1. Converge to the optimal solution (unbiasedness).

2. Minimize the convergence rate.
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Unbiasedness of Local Updates at the PS

Lemma (Sufficient condition for unbiasedness)

Let o;; be such that
E Z Tj(?" o= 1)aji = Pi0y; + Z D = 1.
J:iEeEN;U{i} JEN;
Then, for every i € [n]
E Z T (r + l)ajiAX;+1‘AxZ+1 = Ax;""'l.

JIENTU{i}

\ J

Consequently,

E {X(’"“)HAXT“} x(r)] x4t > Ax;.
7 ? n !
=1
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Expected Suboptimality Gap

Denote A = (aij)i,je[n]’ and
N = N U i) n (MU {i}),
and
Z Z p] p] Qi Q1.
il€[n] 5:5ENu
Then®™),
N2
E|lxt+) o' =0 < — =] PELLEON
2 r

) for u-strongly convex f; with L-Lipschitz continuous gradients, unbiased

stochastic gradients with bounded variance, and 1, = f%‘q_l.
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Optimizing the Weights «;;

mlnS p, Z Z pj pj Q5 51,

7f’l€[’n]‘7]€Nzl
Z pjo; = 1, Vie [n],
J:jEN;
aj; >0 Vi, j € [n]

We can show that this problem is convex in A, and solve it using the

Gauss-Seidel method.

At every iteration ¢ we compute A’ as follows

AYife mod ‘1 —o) =
AZ(E)_{ % I mod n +n {¢ mod n=0} 2 (1)

Ay—l) otherwise,
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Optimizing the Weights «;; (contd.)

For all j € N; U {i}:

+
(<8i+asy) e 0 maxeeng pe < L,
A = 1 if p; = 1
It 2okemn] Lpp=1,keN;U{i}} Pj ’
0 otherwise.
where,

Bji = Z a%*l) and Lj; = {l : j is a common neighbor of 7 and [}.
l€Ly;

+
Ai is set such that 3. o nugy P (—5]'1‘ + 2(1%'171)) =1

Interestingly, we get a water-filling solution.
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Numerical Results (1/3)

n = 10 clients, CIFAR-10, ResNet-20, 0.27 M parameters, 10 classes,
T =8, and learning rate of 0.1.

1ID data distribution (p = 0.2)
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Figure 1: Homogeneous connectivity with p; = 0.2,Vi € [n] and FCT.
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Numerical Results (2/3)

p =1[0.1,0.2,0.3,0.1,0.1,0.5,0.8,0.1,0.2,0.9].

1ID data distribution - Different probabilities
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Figure 2: Heterogeneous connectivity across clients with a ring topology.
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Numerical Results (3/3)

Each client has samples from at most 3 classes.

Non-IID data distribution with Global M um
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Figure 3: Non-1ID data + global momentum.
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Conclusions and Discussions

» Collaborative relaying can solve the problem of communication
stragglers.

» Collaborative relaying ensures unbiasedness of the objective function.

> Strategically choosing the relaying averaging weights reduces the
convergence rate significantly.

» Discussions ...
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Thank youl!

Reach out for further discussions: rajsaha®@stanford.edu

Extended version (with proofs) on arXiv:
Robust Federated Learning with Connectivity Failures: A Semi-Decentralized
Framework with Collaborative Relaying.
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