
On the Convergence of Stochastic Gradient MCMC with High-Order Integrators
Changyou Chen†, Nan Ding‡ and Lawrence Carin†

†Duke University, Durham NC 27708, USA
‡Google Inc., Venice, CA, USA

Introduction

Large-scale Bayesian learning becomes increasingly popular due
to the necessity of processing big data.
Contributions:
•Develop theory to analyze convergence properties of general
stochastic gradient MCMC (SG-MCMC) algorithms.
•Propose a more accurate 2nd-order integrator for SG-MCMC,
with faster convergence rates.
•Experiments on both synthetic data and large-scale applications
demonstrate the proposed theory.

Example SG-MCMC Algorithm

Setting: Given data X = {x1, · · · ,xN}, a generative model
p(X|θ) = ∏N

i=1 p(xi|θ) with model parameter θ, and prior p(θ),
we want to compute the posterior:

π(θ) , p(θ|X) ∝ p(X|θ)p(θ) , e−U(θ) ,

where U(θ) is called the potential energy.
Stochastic gradient Hamiltonian Monte Carlo (SGHMC):
•Conventional MCMC algorithms require processing the whole
data in each iteration, which is computationally prohibited in big
data setting.
•SG-MCMC algorithms overcome this problem by using a
minibatch of the data in each iteration.
The SGHMC is based on the 2nd-order Langevin dynamic defined
as: 

dθ= pdt
dp= −∇θU(θ)dt−Dpdt +

√
2DdW ,

(1)

where p is the augmented momentum variable, W is the standard
Brownian motion, t is the time, and D is a constant.
According to the Fokker-Planck equation, the equilibrium distribu-
tion of (1) is:

P (θ,p) ∝ e−U(θ)+pTp
2 .

To generate approximate samples from (1), we use Algorithm 1 by
discretizing (1) and using stochastic gradients.

Algorithm 1 Stochastic Gradient Hamiltonian Monte Carlo
Input: Parameters h,D.
Initialize θ0 ∈ Rn, p0 ∼ N (0, I).
for l = 1, 2, . . . do

Evaluate stochastic gradient ∇Ũl(θ(l−1)h) from the l-th minibatch.
plh = p(l−1)h−Dp(l−1)hh−∇Ũl(θ(l−1)h)h +

√
2DhN (0, I).

θlh = θ(l−1)h + plhh.
end for

Convergence of SG-MCMC

Priliminary: Given an ergodic stochastic differential equation such
as (1), with an invariant measure ρ(x). In Bayesian learning, we are
interested in the posterior average for some test function φ(x):

φ̄ ,
∫
X φ(x)ρ(x)dx

For a given SG-MCMC algorithm with generated samples (xlh)Ll=1,
we use the sample average φ̂ to approximate φ̄, defined as

φ̂ = 1
L

L∑
l=1
φ(xlh) ≈ φ̄ .

Order of integrators: When solving the discretized SDE such as in
Algorithm 1, the samples are generated from numerical integrators,
e.g., the Euler integrator in Algorithm 1.
An integrator is said to be a Kth-order local integrator if for any
smooth and bounded function f , the following holds:

Ef (x) = ehLf (x) + O(hK+1) , (2)
where L is the generator of the corresponding SDE, and the expec-
tation is taken over the distribution of x.
Theorem (SG-MCMC with fixed step sizes)

Let ‖·‖ be the operator norm. Under certain assumptions, the bias
and MSE of an SG-MCMC with a Kth-order integrator at time
T = hL can be bounded, for some constants C1 and C2, as:

Bias:
∣∣∣∣∣∣Eφ̂− φ̄

∣∣∣∣∣∣ ≤ C1


1
Lh

+
∑
l ‖E∆Vl‖
L

+ hK


MSE: E
φ̂− φ̄

2
≤ C2


1
L

∑
lE ‖∆Vl‖2

L
+ 1
Lh

+ h2K
 ,

where ∆Vl characterizes the error introduced by stochastic gradients
in the l-th minibatch, e.g., in SGHMC, ∆Vl = (∇θŨl −∇θU) · ∇p.

Theorem (Decreasing step sizes)

Under certain assumptions, the bias and MSE of an SG-MCMC with
a Kth-order integrator at time SL = ∑L

l=1 hl can be bounded, for
some constants C1 and C2, as:

Bias:
∣∣∣∣∣Eφ̃− φ̄

∣∣∣∣∣ ≤ C1


1
SL

+
∑L
l=1 h

K+1
l

SL



MSE: E
(
φ̃− φ̄

)2 ≤ C2


∑
l

h2
l

S2
L

E ‖∆Vl‖2 + 1
SL

+ (∑Ll=1 h
K+1
l )2

S2
L

 .

Optimal convergence rates: L−K/(K+1) for the bias,
L−2K/(2K+1) for the MSE.

Acknowledgements

This research was supported by ARO, DARPA, DOE, NGA and ONR.

Symmetric Splitting Integrators

The idea is to split the unfeasible SDE into several sub-SDEs, such
that all the sub-SDEs are analytically solvable. Samples are then
generated by sequentially evolving through these sub-SDEs.
For the SGHMC, (1) is split into

A :


dθ = pdt
dp= 0 , B :


dθ = 0
dp= −Dpdt , O :


dθ = 0
dp= −∇θU(θ)dt +

√
2DdW

The corresponding updates for xlh = (θlh,plh) consist of the fol-
lowing 5 steps:

θ
(1)
lh

A= θ(l−1)h + p(l−1)hh/2⇒ p
(1)
lh

B= e−Dh/2p(l−1)h

⇒ p
(2)
lh

O= p(1)
lh −∇θŨl(θ

(1)
lh )h +

√
2Dhζl

⇒ plh
B= e−Dh/2p

(2)
lh ⇒ θlh

A= θ(1)
lh + plhh/2 ,

where (θ(1)
lh ,p

(1)
lh ,p

(2)
lh ) are intermediate variables.

Experiments

I. Synthetic data: We consider a standard Gaussian model where
xi ∼ N (θ, 1), θ ∼ N (0, 1), with 1000 data samples, minibatch size
10, and test function φ(θ) , θ2.
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Figure : Bias of SGHMC-D (left) and MSE of SGHMC-F (right). Solid red
curves correspond to theoretical optimal rates.

II. Large-scale applications: 1) Latent Dirichlet allocation model
(LDA) on 10MWikipedia data; standard test perplexity is calculated;
2) Sigmoid belief network (SBN) on the MNIST dataset; test likeli-
hood is calculated.
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Figure : Test perplexity on LDA (left) and test likelihood on SBN (right).


