Introduction

Large-scale Bayesian learning becomes increasingly popular due
to the necessity of processing big data.

Contributions:
« Develop theory to analyze convergence properties of general

stochastic gradient MCMC (SG-MCMC) algorithms.

« Propose a more accurate 2nd-order integrator for SG-MCMC,
with faster convergence rates.

» Experiments on both synthetic data and large-scale applications
demonstrate the proposed theory.

Example SG-MCMC Algorithm

Setting: Given data X = {@,--- ,xy}, a generative model
p(X|0) = 1, p(x;|@) with model parameter @, and prior p(8),
we want to compute the posterior:

m(0) £ p(8|X) o p(X|0)p(6) = 1),
where U(0) is called the potential energy.

Stochastic gradient Hamiltonian Monte Carlo (SGHMC):
« Conventional MCMC algorithms require processing the whole
data in each iteration, which is computationally prohibited in big
data setting.

« SG-MCMC algorithms overcome this problem by using a
minibatch of the data in each iteration.

The SGHMC is based on the 2nd-order Langevin dynamic defined
as:

0 = pdt 0
dp= —VeU(0)dt — Dpdt + v/2DdW ,

where p is the augmented momentum variable, VV is the standard
Brownian motion, t is the time, and ) is a constant.

\

According to the Fokker-Planck equation, the equilibrium distribu-
tion of (1) is:

PTP

P(6,p) oc e VO
To generate approximate samples from (1), we use Algorithm 1 by
discretizing (1) and using stochastic gradients.

Algorithm 1 Stochastic Gradient Hamiltonian Monte Carlo

Input: Parameters h, D.
Initialize 6, € R", p, ~ N(0,1).
for[=1,2,... do
Evaluate stochastlc gradient VUZ(H( 1)y) from the [-th minibatch.

P = P — Dpa_ywh — VUI(0-1yp)h + V2DRN(0,1).
01, = 0 _1n + Diph.
end for
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Convergence of SG-MCMC

Priliminary: Given an ergodic stochastic differential equation such
as (1), with an invariant measure p(a). In Bayesian learning, we are
interested in the posterior average for some test function ¢(x):

0= [y ¢(z)p(x)de

For a given SG-MCMC algorithm with generated samples ()11,

we use the sample average ¢ to approximate ¢, defined as
~ 17 -

b= d@n) =9
Order of integrators: When solving the discretized SDE such as in
Algorithm 1, the samples are generated from numerical integrators,
e.g., the Euler integrator in Algorithm 1.
An integrator is said to be a Kth-order local integrator if for any
smooth and bounded function f, the following holds:

Lf(x) = " f(x) + O(h" ) | (2)
where L is the generator of the corresponding SDE, and the expec-
tation is taken over the distribution of .

Theorem (SG-MCMC with fixed step sizes)

Let ||-|| be the operator norm. Under certain assumptions, the bias
and MSE of an SG-MCMC with a K th-order integrator at time
[’ = hL can be bounded, for some constants (' ana’ (5, as:

L n|BAV
Bias: [Eo — o < (C | - h
1dS ¢ ¢ S 1\Lh T |
(1 2 )
A —\ 2 —Zl 1
MSE:-E (¢ — o) < Cy | L I - Pt

/
where AV characterizes the error introduced by stochastic gradients

in the I-th minibatch, e.g., in SGHMC, AV, = (VoU, — VU) - V,,

Theorem (Decreasing step sizes)

Under certain assumptions, the bias and MSE of an SG-MCMC with
a K th-order integrator at time S; = >, h; can be bounded, for
some constants C; and (5, as:

( K+1)
-~ 1 > h;
Bias: Ko — o < =l
b-dl<alg + g
( % K+1\2)
ST T\2 hi o 1 (Zl Lh )
MSE: E (¢ — < (OhH | K | | .
<¢ ¢> =~ 2 \l Sl% [ SL SL |

Optimal convergence rates: L= 5/E+Y " for the bias,

L2K/CK+D) for the MSE.
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Symmetric Splitting Integrators

The idea is to split the unfeasible SDE into several sub-SDEs, such
that all the sub-SDEs are analytically solvable. Samples are then
generated by sequentially evolving through these sub-SDEs.

For the SGHMC, (1) is split into

[(d@=pdt  (dO=0 |
A'ic'_p:() B ic'_p: — Dpdt O

40 = (
dp = —VeU(0)dt + v2DdW

The corresponding updates for x;;, = (65, pP;;,) consist of the fol-

lowing 5 steps:

Hl(ilz) 4 00_1n+pu_ph/2 = pl(ilz) = ¢ I/

= Pin’ £ Pia) = VoUi(61)h + V2Dhg

= Pin = €_Dh/2pz(h> = 0, = 95(h> +ph/2

Pi-1n

where (Hgi),pg}l),pg?) are intermediate variables.

Experiments

I. Synthetic data: We consider a standard Gaussian model where
ri ~N(0,1),0 ~N(0,1), with 1000 data samples, minibatch size
10, and test function ¢(0) = 6°.
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Figure : Bias of SGHMC-D (left) and MSE of SGHMC-F (right). Solid red

curves correspond to theoretical optimal rates.

Il. Large-scale applications: 1) Latent Dirichlet allocation model
(LDA) on 10M Wikipedia data; standard test perplexity is calculated;
2) Sigmoid belief network (SBN) on the MNIST dataset; test likeli-

hood is calculated.
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Figure : Test perplexity on LDA (left) and test likelihood on SBN (right).



