

Introduction

Large-scale Bayesian learning becomes increasingly popular due to the necessity of processing big data.

Contributions:

Develop theory to analyze convergence properties of general stochastic gradient MCMC (SG-MCMC) algorithms. Propose a more accurate 2nd-order integrator for SG-MCMC, with faster convergence rates.

Experiments on both synthetic data and large-scale applications demonstrate the proposed theory.

Example SG-MCMC Algorithm

Setting: Given data $\mathbf{X} = \{ oldsymbol{x}_1, \cdots, oldsymbol{x}_N \}$, a generative model $p(\mathbf{X}|\boldsymbol{\theta}) = \prod_{i=1}^{N} p(\boldsymbol{x}_i|\boldsymbol{\theta})$ with model parameter $\boldsymbol{\theta}$, and prior $p(\boldsymbol{\theta})$, we want to compute the posterior:

 $\pi(\boldsymbol{\theta}) \triangleq p(\boldsymbol{\theta}|\mathbf{X}) \propto p(\mathbf{X}|\boldsymbol{\theta})p(\boldsymbol{\theta}) \triangleq e^{-U(\boldsymbol{\theta})}.$ where $U(\boldsymbol{\theta})$ is called the potential energy.

Stochastic gradient Hamiltonian Monte Carlo (SGHMC):

- Conventional MCMC algorithms require processing the whole data in each iteration, which is computationally prohibited in big data setting.
- SG-MCMC algorithms overcome this problem by using a minibatch of the data in each iteration.

The SGHMC is based on the 2nd-order Langevin dynamic defined as:

$$\begin{cases} \mathrm{d}\boldsymbol{\theta} = \boldsymbol{p} \mathrm{d}t \\ \mathrm{d}\boldsymbol{p} = -\nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}) \mathrm{d}t - D\boldsymbol{p} \mathrm{d}t + \sqrt{2D} \mathrm{d}t \end{cases}$$

where p is the augmented momentum variable, $\mathcal W$ is the standard Brownian motion, t is the time, and D is a constant.

According to the Fokker-Planck equation, the equilibrium distribution of (1) is:

 $P(oldsymbol{ heta},oldsymbol{p}) \propto e^{-U(oldsymbol{ heta})+rac{oldsymbol{p}^Toldsymbol{p}}{2}}$.

To generate approximate samples from (1), we use Algorithm 1 by discretizing (1) and using stochastic gradients.

Algorithm 1 Stochastic Gradient Hamiltonian Monte Carlo **Input:** Parameters h, D. Initialize $\boldsymbol{\theta}_0 \in \mathbb{R}^n$, $\boldsymbol{p}_0 \sim \mathcal{N}(0, \mathbf{I})$. for l = 1, 2, ... do Evaluate stochastic gradient $\nabla \tilde{U}_l(\boldsymbol{\theta}_{(l-1)h})$ from the *l*-th minibatch. $\boldsymbol{p}_{lh} = \boldsymbol{p}_{(l-1)h} - D\boldsymbol{p}_{(l-1)h}h - \nabla \tilde{U}_l(\boldsymbol{\theta}_{(l-1)h})h + \sqrt{2Dh}\mathcal{N}(0,\mathbf{I}).$ $\boldsymbol{\theta}_{lh} = \boldsymbol{\theta}_{(l-1)h} + \boldsymbol{p}_{lh}h.$ end for

On the Convergence of Stochastic Gradient MCMC with High-Order Integrators

Changyou Chen[†], Nan Ding[‡] and Lawrence Carin[†]

[†]Duke University, Durham NC 27708, USA [‡]Google Inc., Venice, CA, USA

Convergence of SG-MCMC

Priliminary: Given an ergodic stochastic differential equation such as (1), with an invariant measure $ho(oldsymbol{x})$. In Bayesian learning, we are interested in the posterior average for some test function $\phi({m x})$: $\phi \triangleq \int_{\mathcal{X}} \phi(\boldsymbol{x}) \rho(\boldsymbol{x}) \mathrm{d}\boldsymbol{x}$

For a given SG-MCMC algorithm with generated samples $(\boldsymbol{x}_{lh})_{l=1}^{L}$, we use the sample average ϕ to approximate ϕ , defined as $\hat{\phi} = \frac{1}{I} \sum_{I=1}^{L} \phi($

Order of integrators: When solving the discretized SDE such as in Algorithm 1, the samples are generated from numerical integrators, e.g., the Euler integrator in Algorithm 1. An integrator is said to be a Kth-order local integrator if for any smooth and bounded function f, the following holds: $\mathbb{E}f(\boldsymbol{x}) = e^{h\mathcal{L}}f(\boldsymbol{x}) + O(h^{K+1}),$ (2)

where \mathcal{L} is the generator of the corresponding SDE, and the expectation is taken over the distribution of x.

Theorem (SG-MCMC with fixed step sizes)

Let $\|\cdot\|$ be the operator norm. Un and MSE of an SG-MCMC with T = hL can be bounded, for some

> Bias: $\left|\mathbb{E}\hat{\phi} - \bar{\phi}\right| \leq C_1 \left(\frac{1}{Lh} + Lh\right)$ MSE: $\mathbb{E}\left(\hat{\phi} - \bar{\phi}\right)^2 \leq C_2 \left(\frac{1}{L}\sum_{l} C_{l}\right)^2$

where ΔV_l characterizes the error in the l-th minibatch, e.g., in SGH

some constants C_1 and C_2 , as:

Bias: $\left|\mathbb{E}\tilde{\phi} - \bar{\phi}\right| \leq C_1 \left(\frac{1}{S_L} + \frac{\Sigma_{l=1}^L}{S_L}\right)$ $MSE: \mathbb{E}\left(\tilde{\phi} - \bar{\phi}\right)^2 \le C_2 \left| \sum_l \frac{h_l^2}{S_T^2} \mathbb{E} \right|'$

Optimal convergence rates: $L^{-2K/(2K+1)}$ for the MSE.

This research was supported by ARO, DARPA, DOE, NGA and ONR.

$$(\boldsymbol{x}_{lh}) pprox ar{\phi}$$
 .

nder certain assumptions, the bias
in a Kth-order integrator at time
in constants
$$C_1$$
 and C_2 , as:

$$+\frac{\Sigma_l \|\mathbb{E}\Delta V_l\|}{L} + h^K \Big)$$

$$\frac{\Sigma_l \mathbb{E} \|\Delta V_l\|^2}{L} + \frac{1}{Lh} + h^{2K} \Big),$$
introduced by stochastic gradients
HMC, $\Delta V_l = (\nabla_{\theta} \tilde{U}_l - \nabla_{\theta} U) \cdot \nabla_p.$

Theorem (Decreasing step sizes)

Under certain assumptions, the bias and MSE of an SG-MCMC with a Kth-order integrator at time $S_L = \Sigma_{l=1}^L h_l$ can be bounded, for

$$\begin{split} \frac{1}{S_L} \frac{h_l^{K+1}}{S_L} \\ \|\Delta V_l\|^2 + \frac{1}{S_L} + \frac{(\Sigma_{l=1}^L h_l^{K+1})^2}{S_L^2} \\ L^{-K/(K+1)} & \text{for the bias,} \end{split}$$

Acknowledgements

Symmetric Splitting Integrators

The idea is to split the unfeasible SDE into several sub-SDEs, such that all the sub-SDEs are analytically solvable. Samples are then generated by sequentially evolving through these sub-SDEs. For the SGHMC, (1) is split into

$$A: \begin{cases} d\boldsymbol{\theta} = \boldsymbol{p} dt \\ d\boldsymbol{p} = 0 \end{cases}, B: \begin{cases} d\boldsymbol{\theta} = 0 \\ d\boldsymbol{p} = -D\boldsymbol{p} dt \end{cases}, O: \begin{cases} d\boldsymbol{\theta} = 0 \\ d\boldsymbol{p} = -\nabla_{\boldsymbol{\theta}} U(\boldsymbol{\theta}) dt + \sqrt{2D} dW \end{cases}$$

The corresponding updates for $x_{lh} = (\theta_{lh}, p_{lh})$ consist of the fol-

lowing 5 steps:

$$\boldsymbol{\theta}_{lh}^{(1)} \triangleq \boldsymbol{\theta}_{lh}^{(1)}$$
 $\Rightarrow \boldsymbol{p}_{lh}^{(2)} \triangleq$
 $\Rightarrow \boldsymbol{p}_{lh}^{(2)} =$
where $(\boldsymbol{\theta}_{lh}^{(1)}, \boldsymbol{p}_{lh}^{(1)},$

I. Synthetic data: We consider a standard Gaussian model where $x_i \sim \mathcal{N}(\theta, 1), \theta \sim \mathcal{N}(0, 1),$ with 1000 data samples, minibatch size 10, and test function $\phi(\theta) \triangleq \theta^2$.

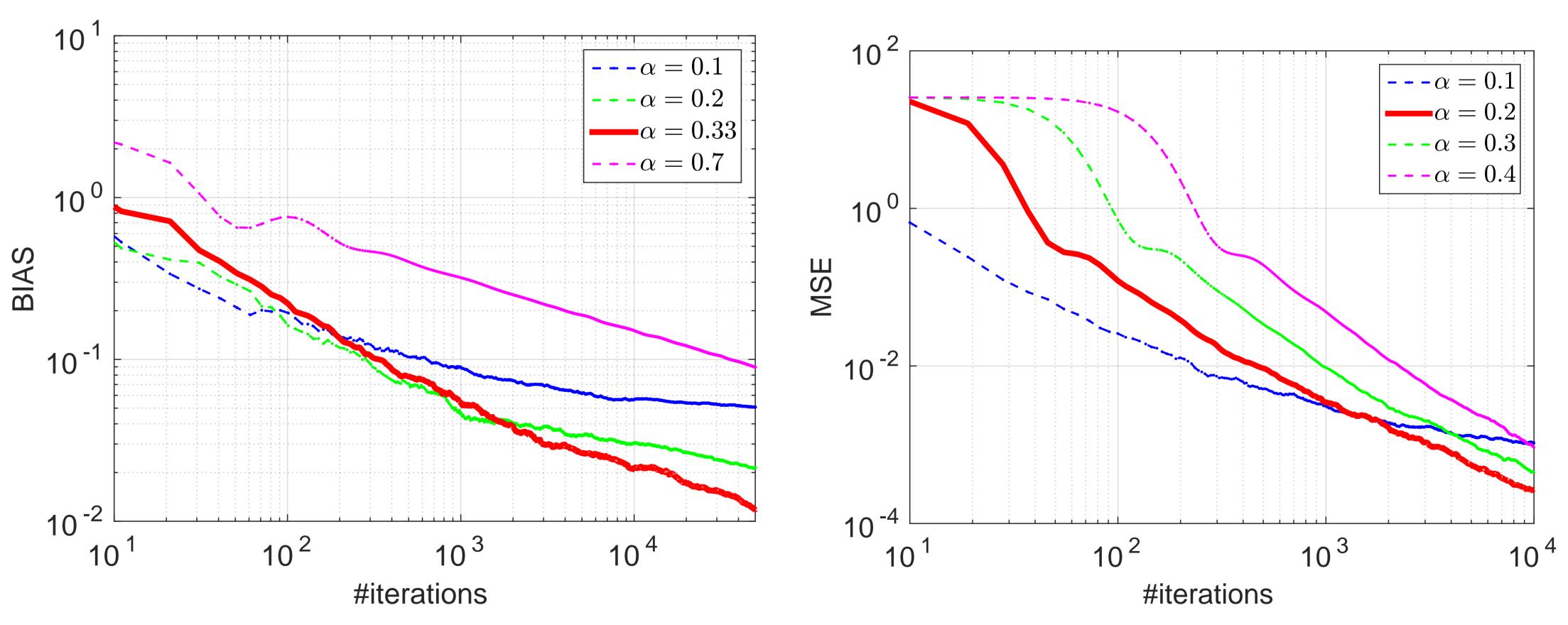


Figure : Bias of SGHMC-D (left) and MSE of SGHMC-F (right). Solid red curves correspond to theoretical optimal rates.

hood is calculated.

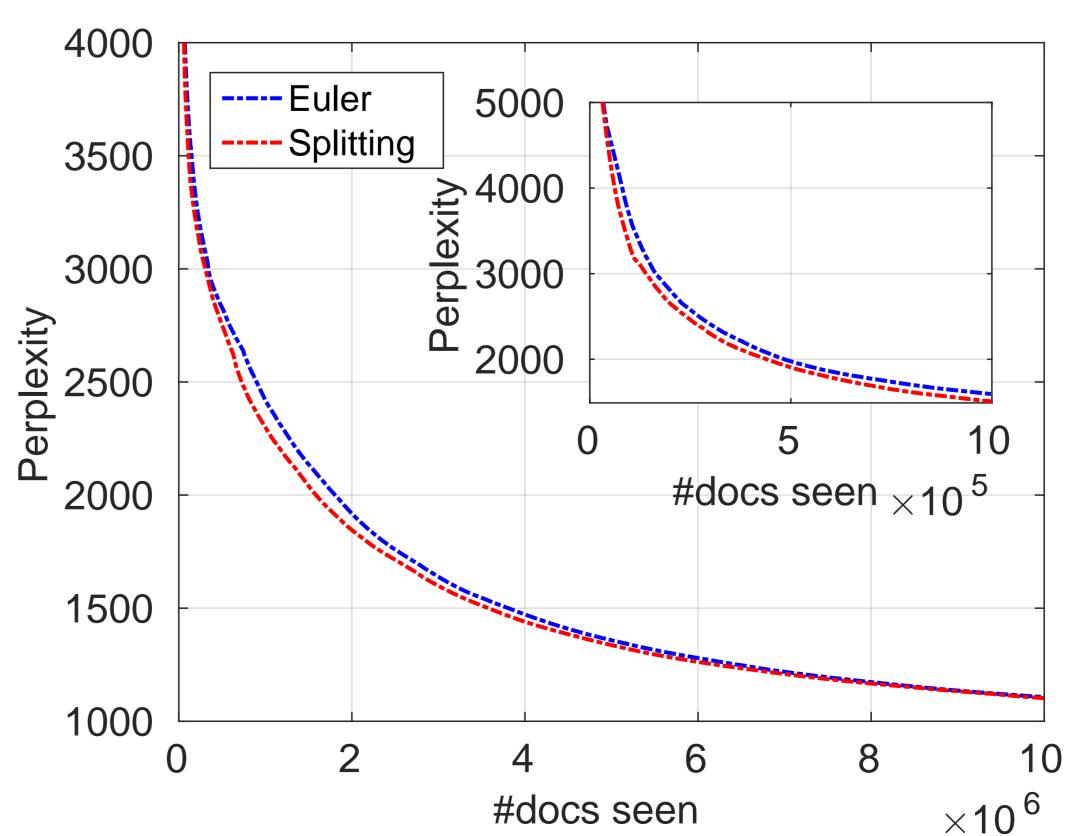


Figure : Test perplexity on LDA (left) and test likelihood on SBN (right).

 $P_{(l-1)h} + p_{(l-1)h}h/2 \Rightarrow p_{lh}^{(1)} \stackrel{B}{=} e^{-Dh/2} p_{(l-1)h}$ $\stackrel{O}{=} \boldsymbol{p}_{lh}^{(1)} - \nabla_{\boldsymbol{\theta}} \tilde{U}_l(\boldsymbol{\theta}_{lh}^{(1)})h + \sqrt{2Dh}\zeta_l$ $\stackrel{B}{=} e^{-Dh/2} \boldsymbol{p}_{lh}^{(2)} \Rightarrow \boldsymbol{\theta}_{lh} \stackrel{A}{=} \boldsymbol{\theta}_{lh}^{(1)} + \boldsymbol{p}_{lh} h/2 ,$ $, \boldsymbol{p}_{lh}^{(2)})$ are intermediate variables.

Experiments

II. Large-scale applications: 1) Latent Dirichlet allocation model (LDA) on 10M Wikipedia data; standard test perplexity is calculated; 2) Sigmoid belief network (SBN) on the MNIST dataset; test likeli-

20	2	0	5	0	E.	3	3	5
3	5		2	\odot	53	2	121	
n	6	1	1		Ľ	3	3	6
260	C	5	÷i,	3	1	1	6	
51 53	74	2		C	3	-	<i>di</i>	
30	÷.	21	6	2	5	0		2:
00	-	Cr	14	?	6	1	3	4
99	2	0	S	じ	5	6	13	3
5.3		0	G	3	5	5	0	3
5 .	9	3	0	5	9	6	3	5