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Problem
• We often deal with sparse information when mapping energy 

infrastructure
• These maps are important to determining the best way to electrify 

unelectrified regions
• The leading models at identifying this infrastructure do best with lots of 

geographically diverse data
• This data is not only expensive, but often doesn’t exist for regions of 

interest
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Solution
• It’s simple and cheap to create synthetic diverse imagery for various 

terrains and geographies
• Can then train on real datasets augmented with synthetic data to 

improve performance
• These models should be more robust to context changes such as 

groundcover, vegetation, and urban density that infrastructure is seen in
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Methodology
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1 Designing the City

1. Used OpenStreetMap 
to mimic the street 
layout of cities

2. Generated various 
random layouts

3. Pulled roofing and 
façade textures from 
Google Maps

2 Testing the Models
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1. Tested the trained 
models on real satellite 
imagery

2. The model predicts 
where buildings are in 
testing imagery

3. Compared predictions 
with ground truth to 
measure accuracy 
using IoU



Results & Conclusions

Real Austin

Synthetic Austin

Vienna Testing Results

Trained On Mean IoU Standard 
Deviation

Baseline (Real Non-Target Imagery) 0.655 0.0096
Synthetic Group (Baseline + Synthetic Data) 0.663 0.0032
Target Group (Baseline + Real Target Imagery 0.738 0.0015

•We were able to design synthetic cities to resemble their real counterparts (left figure)
• But, can this improve the identification of energy infrastructure in satellite imagery?
• Training on real non-target city and synthetic data improved performance relative to 

training on the real data (baseline) alone
• Adding synthetic imagery designed to match that city boosted its performance on 

Vienna (above table)
• In data-poor environments or when applying to new terrains, it is possible that 

augmenting available training data that includes synthetic data could extend models’ 
generalizability in new domains


