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Motivation

¢ Jamming attacks can be real threat to assorted communications.

® From jammer' s perspective, a more efficient and powerful jamming system is desired
while majority of jamming/anti-jamming publications focus on anti-jamming
[Pirayesh and Zeng, 2021].

¢ From anti-jammer’ s perspective, current intelligent anti-jamming framework are not
designed to prevent from smart jammer (self-learning jammers) [Xu et al., 2020].

e Study of self-learning jammers leads to better understanding of jammers’ learning
behavior, thus possible improved defense mechanism

Objective: A Multi-Jammer System based on Reinforcement Learnring that
1. Adapts to unknown environment

2. Learns to improve its jamming success rate
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System Model-Assumptions and Notations

® Sender S and Receiver R. At each time t,

® M available channels
® Single-band transmission, the sender S choose current channel Cét) to send signals.

® Multi-band transmission, the sender S choose current channels Cét% and corresponding
powers Pgt}, {=1,...,L, where L < M.
e Jammers Ji,i=1,...,N. At each time t,
® J; listens to all channels and gains some information
¢ J; takes actions A,(-t) = [P,.(t), C,-(t)], where P,-(t) and C,-(t) are current power and channel
chosen by the jammer J;
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System Model-lllustration
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Figure 1: Multi-Jamming Wireless Communication System.
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System Model-Successful Attack

® Jammer J; attacks the channel by taking actions Al = [P,.(t), C,-(t)].

i
* Low signal-to-interference-plus-noise ratio (SINR), where
Pét) * hg

SINR(®) = .
Noises + SN, PY s by s 1(ct) = V)

hs and h; are power gains from sender and jammer J; respectively. It's unrealistic for
jammer to know true SINR from receiver, thus we need an estimation of SINR.

e Instant Success, G(t) =1 (SINR(t) < 7'), where 7 is a pre-defined threshold.

¢ Instant Reward:
R(t) = B x <|0g2(1 + SNR(®)) — log,(1 + SlNR(t))) — Costp, * Z,N:l P,-(t), where B is the
bandwidth (default B = 10 in the simulation), Cost,, is the cost of unit power of jammers.
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Reinforcement Learning

¢ Reinforcement learning algorithms allows an agent to learn by interacting with the
environment to maximize its cumulative received rewards.
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Figure 2: Reinforcement Learning.
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Reinforcement Learning

e Key elements of reinforcement learning
® Environment with internal state s; € S

Agent'’s possible action: a; € A

Agent's policy: m: S — A

State transition: p: Sx A — S

Reward function: R: S x A — R

® Goal of RL agent is to maximize cumulative rewards (i.e., selecting a policy to maximize
the Q-function/action-value function/value function):

max Q" (s¢, ar) = maxE(Z th(t)|st, ar; 7'(‘).
t=0
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Multi-agent Reinforcement Learning

¢ Reinforcement learning algorithm is single agent. However, we want to build and study
the behavior of a system of multiple collaborative jammers. Multi-agent reinforcement
learning algorithm is necessary
® Multi-agent Reinforcement Learning:
® Training: Centralized / Distributed
® Execution: Centralized / Distributed
¢ Centralized Training/Execution requires perfect communication in real time. This is rare
and expensive. We choose distributed training/ distributed execution MARL.
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Multi-Agent Deep Q-Network (MADQN) Jammers

® Team reward for jammers:

Amount of blocked channel: B x <|0g2(1 +SNR®) — log,(1 + SINR(t)))
Jamming is not free: Cost for jamming power Cost,
R = B« (Iog2(1 + SNR®) — log,(1 + SINR(t))) — Cost, + SN, PO

¢ For each jammer:

Individual reward perceived by agent

R = B+ <|0g2(1 + SNR) — log,(1 + SINR(t))) — Cost, + P9

Deep Q-Network for value function

Double Q-Network as fixed target network and actor network for convergence and counteract
overestimation problem in initial learning period

Prioritized experience replay for faster learning and efficiency of data

Agent’s experience at time t — (&g, St, fe41, St41)
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Experimental Design

We have tested our model under different scenarios. To avoid being jammed, we assume the
sender chooses different strategies to hop across multiple channels.
1. Single-Band Transmission
® Sweep Type, C_ét) = t%N
H 0, < 2
* Pulse Type, Cs.r — { 5, if t%N < 2;

1, o.w.
® Autoregressive Type,
Cst—1+ %N, if Cs:—1%2 =0
Cen — Cst—1—i%N, if Cs;—1%2 =1
ST X, e {1,N}, if Css_1 > N, where p(X; = 1) = 0.1 and p(X; = N) = 0.9
Xe € {1, N}, if Cs4—1 < 1, where p(X; =1) = 0.9 and p(X; = N) =0.1
® Random Type, C_gt) = Uniform(1,..., N)

2. Multi-Band Transmission - Sweep, Pulse and Autoregressive Types
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Experimental Design

We consider two evaluation metrics:
1. Instant Success Rate, G(t) =1 (SINR(t) < 7'), where 7 is taken as a half value of
maximum SINR.
2. Instant Reward, R(t) = B % (Iog2(1 + SNR®) — logy(1 + SINR(t))> — Cost, # SN, P,-(t),
where B = 10 and Cost, > 0 denotes the cost of power by each jammer.
We compare the performance of five different type of adversaries:
¢ Random jamming Jrand
® Greedy Adversary Jgre
® Single-agent jamming Jsingle
® Multi-agent jamming Jyuii
e Multi-agent Greedy RL-agent JgrerL
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Experimental Design

Power of sender Psg

* Power sets of jammers, P, = [0,1, 3, 5]

Number of available channels, M =5

Number of used channels for mult-channel case, L =2

Number of jamming agents (adversaries), N = 3
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Single-Channel, Sweep-Type Sender

At each time, the sender picks one channel by Cét) = t%M. Note M =5 and constant power
Ps = 5.
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Single-Channel, Sweep Type Sender - Success Rate
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Figure 3: Performance of Jamming vs. Discrete Time Under Sweep Changes of a Single Channel.
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Single-Channel, Sweep Type Sender: Instant Rewards
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Figure 4: Performance of Jamming vs. Discrete Time Under Sweep Changes of a Single Channel. 1624



Multi-Channel, Sweep Type Sender

At each time t, the sender picks channels [Céti, C_g%] by C_gg = (t+ ¢)%M. Note that
constant power Ps = [1,5] and the number of total available channels M = 5.
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Multi-Channel, Sweep Type Sender: Success Rates
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Figure 5: Performance of Jamming vs. Discrete Time Under Sweep Changes of Multi-Channel.
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Multi-Channel, Sweep Type Sender: Instant Rewards
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Figure 6: Performance of Jamming vs. Discrete Time Under Sweep Changes of Multi-Channel. 10,24



Single-Channel, Pure Random Type Sender
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Figure 7: Performance of Jamming vs. Discrete Time Under Random Changes of a Single Channel.
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Performance Overview: Averaged Success Rates

Random  Greedy

Greedy RL  Single RL  Multi RL

Sweep-Single  0.378 0.445  0.552 0.771 0.927
Sweep-Multi  0.579 0.358  0.620 0.879 0.939
Pulse-Single  0.374 0.416 0.384 0.768 0.923
Pulse-Multi ~ 0.698 0.431 0.718 0.867 0.959
AR-Single 0.404 0.607  0.694 0.792 0.927
AR-Multi 0.503 0.364  0.393 0.687 0.845

Table 1: Success Jamming Rate for Various Jammers Under Assorted Communication Scenarios.

® Greedy: Record average reward of its actions and choose the action with the highest
history reward (Variation of Multi-Armed Bandit problem)

® Greedy RL: e-greedy RL agent with e = 0 (Skip the exploration part in
exploration /exploitation dilemma)
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Experimental Results

® In different scenarios, multi-agent jamming outperforms single-agent jamming, and gain
much in multi-channel cases.

e With low cost of unit jamming power, the multi-agent jamming benefits more advantages
than single-agent jamming.

® More realistic simulations need to be considered.
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Future Work

¢ Estimation of SNR and SINR under realistic cases
® Multi-agent jamming that each jammer can communicates with each other

® Jammers can choose their actions based on communicating with each other in a given
jammer communication network
® Jammers can jam in more than one channel

¢ Centralized multi-agent jamming
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