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Motivation

• Jamming attacks can be real threat to assorted communications.

• From jammer’ s perspective, a more efficient and powerful jamming system is desired
while majority of jamming/anti-jamming publications focus on anti-jamming
[Pirayesh and Zeng, 2021].

• From anti-jammer’ s perspective, current intelligent anti-jamming framework are not
designed to prevent from smart jammer (self-learning jammers) [Xu et al., 2020].

• Study of self-learning jammers leads to better understanding of jammers’ learning
behavior, thus possible improved defense mechanism

Objective: A Multi-Jammer System based on Reinforcement Learnring that

1. Adapts to unknown environment

2. Learns to improve its jamming success rate
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System Model-Assumptions and Notations

• Sender S and Receiver R. At each time t,
• M available channels
• Single-band transmission, the sender S choose current channel C

(t)
S to send signals.

• Multi-band transmission, the sender S choose current channels C
(t)
S,`, and corresponding

powers P
(t)
S,`, ` = 1, . . . , L, where L ≤ M.

• Jammers Ji , i = 1, . . . ,N. At each time t,
• Ji listens to all channels and gains some information
• Ji takes actions A

(t)
i = [P

(t)
i ,C

(t)
i ], where P

(t)
i and C

(t)
i are current power and channel

chosen by the jammer Ji
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System Model-Illustration

Figure 1: Multi-Jamming Wireless Communication System.
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System Model-Successful Attack

• Jammer Jj attacks the channel by taking actions A
(t)
i = [P

(t)
i ,C

(t)
i ].

• Low signal-to-interference-plus-noise ratio (SINR), where

SINR(t) =
P
(t)
S ∗ hS

Noises +
∑N

i=1 P
(t)
i ∗ hi ∗ I (C

(t)
i = C

(t)
S )

.

hS and hi are power gains from sender and jammer Ji respectively. It’s unrealistic for
jammer to know true SINR from receiver, thus we need an estimation of SINR.

• Instant Success, G (t) = I
(

SINR(t) < τ
)

, where τ is a pre-defined threshold.

• Instant Reward:
R(t) = B ∗

(
log2(1 + SNR(t))− log2(1 + SINR(t))

)
− Costp ∗

∑N
i=1 P

(t)
i , where B is the

bandwidth (default B = 10 in the simulation), Costp is the cost of unit power of jammers.
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Reinforcement Learning

• Reinforcement learning algorithms allows an agent to learn by interacting with the
environment to maximize its cumulative received rewards.

Figure 2: Reinforcement Learning.
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Reinforcement Learning

• Key elements of reinforcement learning
• Environment with internal state st ∈ S
• Agent’s possible action: at ∈ A
• Agent’s policy: π : S → A
• State transition: p : S ×A → S
• Reward function: R : S ×A → R

• Goal of RL agent is to maximize cumulative rewards (i.e., selecting a policy to maximize
the Q-function/action-value function/value function):

max
π

Qπ(st , at) = max
π

E
( ∞∑

t=0

γtR(t)|st , at ;π
)
.

8 / 24



Multi-agent Reinforcement Learning

• Reinforcement learning algorithm is single agent. However, we want to build and study
the behavior of a system of multiple collaborative jammers. Multi-agent reinforcement
learning algorithm is necessary
• Multi-agent Reinforcement Learning:

• Training: Centralized / Distributed
• Execution: Centralized / Distributed

• Centralized Training/Execution requires perfect communication in real time. This is rare
and expensive. We choose distributed training/ distributed execution MARL.
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Multi-Agent Deep Q-Network (MADQN) Jammers

• Team reward for jammers:

• Amount of blocked channel: B ∗
(

log2(1 + SNR(t))− log2(1 + SINR(t))
)

• Jamming is not free: Cost for jamming power Costp
• R(t) = B ∗

(
log2(1 + SNR(t))− log2(1 + SINR(t))

)
− Costp ∗

∑N
i=1 P

(t)
i

• For each jammer:
• Individual reward perceived by agent

R(t) = B ∗
(

log2(1 + SNR)− log2(1 + SINR(t))
)
− Costp ∗ P(t)

i

• Deep Q-Network for value function
• Double Q-Network as fixed target network and actor network for convergence and counteract

overestimation problem in initial learning period
• Prioritized experience replay for faster learning and efficiency of data

Agent’s experience at time t→ (at , st , rt+1, st+1)
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Experimental Design

We have tested our model under different scenarios. To avoid being jammed, we assume the
sender chooses different strategies to hop across multiple channels.

1. Single-Band Transmission

• Sweep Type, C
(t)
S = t%N

• Pulse Type, CS,t =

{
5, if t%N ≤ 2;
1, o.w .

• Autoregressive Type,

CS,t =


CS,t−1 + i%N, if CS,t−1%2 = 0
CS,t−1 − i%N, if CS,t−1%2 = 1
Xt ∈ {1,N}, if CS,t−1 > N, where p(Xt = 1) = 0.1 and p(Xt = N) = 0.9
Xt ∈ {1,N}, if CS,t−1 < 1, where p(Xt = 1) = 0.9 and p(Xt = N) = 0.1

• Random Type, C
(t)
S = Uniform(1, . . . ,N)

2. Multi-Band Transmission - Sweep, Pulse and Autoregressive Types
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Experimental Design

We consider two evaluation metrics:

1. Instant Success Rate, G (t) = I
(

SINR(t) < τ
)

, where τ is taken as a half value of

maximum SINR.

2. Instant Reward, R(t) = B ∗
(

log2(1 + SNR(t))− log2(1 + SINR(t))
)
− Costp ∗

∑N
i=1 P

(t)
i ,

where B = 10 and Costp > 0 denotes the cost of power by each jammer.

We compare the performance of five different type of adversaries:

• Random jamming JRand
• Greedy Adversary JGre
• Single-agent jamming JSingle
• Multi-agent jamming JMulti

• Multi-agent Greedy RL-agent JGreRL
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Experimental Design

• Power of sender PS

• Power sets of jammers, PJ = [0, 1, 3, 5]

• Number of available channels, M = 5

• Number of used channels for mult-channel case, L = 2

• Number of jamming agents (adversaries), N = 3
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Single-Channel, Sweep-Type Sender

At each time, the sender picks one channel by C
(t)
S = t%M. Note M = 5 and constant power

PS = 5.
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Single-Channel, Sweep Type Sender - Success Rate

Figure 3: Performance of Jamming vs. Discrete Time Under Sweep Changes of a Single Channel. 15 / 24



Single-Channel, Sweep Type Sender: Instant Rewards

Figure 4: Performance of Jamming vs. Discrete Time Under Sweep Changes of a Single Channel.
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Multi-Channel, Sweep Type Sender

At each time t, the sender picks channels [C
(t)
S ,1,C

(t)
S,2] by C

(t)
S ,` = (t + `)%M. Note that

constant power PS = [1, 5] and the number of total available channels M = 5.
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Multi-Channel, Sweep Type Sender: Success Rates

Figure 5: Performance of Jamming vs. Discrete Time Under Sweep Changes of Multi-Channel.
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Multi-Channel, Sweep Type Sender: Instant Rewards

Figure 6: Performance of Jamming vs. Discrete Time Under Sweep Changes of Multi-Channel.
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Single-Channel, Pure Random Type Sender

Figure 7: Performance of Jamming vs. Discrete Time Under Random Changes of a Single Channel.
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Performance Overview: Averaged Success Rates

Random Greedy Greedy RL Single RL Multi RL

Sweep-Single 0.378 0.445 0.552 0.771 0.927

Sweep-Multi 0.579 0.358 0.620 0.879 0.939

Pulse-Single 0.374 0.416 0.384 0.768 0.923

Pulse-Multi 0.698 0.431 0.718 0.867 0.959

AR-Single 0.404 0.607 0.694 0.792 0.927

AR-Multi 0.503 0.364 0.393 0.687 0.845

Table 1: Success Jamming Rate for Various Jammers Under Assorted Communication Scenarios.

• Greedy: Record average reward of its actions and choose the action with the highest
history reward (Variation of Multi-Armed Bandit problem)
• Greedy RL: ε-greedy RL agent with ε = 0 (Skip the exploration part in

exploration/exploitation dilemma)
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Experimental Results

• In different scenarios, multi-agent jamming outperforms single-agent jamming, and gain
much in multi-channel cases.

• With low cost of unit jamming power, the multi-agent jamming benefits more advantages
than single-agent jamming.

• More realistic simulations need to be considered.
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Future Work

• Estimation of SNR and SINR under realistic cases
• Multi-agent jamming that each jammer can communicates with each other

• Jammers can choose their actions based on communicating with each other in a given
jammer communication network

• Jammers can jam in more than one channel

• Centralized multi-agent jamming

23 / 24



References I

Pirayesh, H. and Zeng, H. (2021).
Jamming Attacks and Anti-Jamming Strategies in Wireless Networks: A Comprehensive
Survey.

Xu, J., Lou, H., Zhang, W., and Sang, G. (2020).
An intelligent anti-jamming scheme for cognitive radio based on deep reinforcement
learning.
IEEE Access, 8:202563–202572.

24 / 24


	Problem and Assumption
	Introduction to RL and MARL
	Multi-agent Deep Q-Network (MADQN) Jammers
	Experimental Results
	Attack for Single-channel transmission
	Attack for Multi-channel transmission

	Future work

