Multi-Agent Adversarial Attacks for Multi-Channel Communications

Juncheng Dong, Suya Wu, Mohammadreza Soltani Vahid Tarokh

Overview

- 1. Problem and Assumption
- 2. Introduction to RL and MARL
- 3. Multi-agent Deep Q-Network (MADQN) Jammers
- 4. Experimental Results
 Attack for Single-channel transmission
 Attack for Multi-channel transmission
- 5. Future work

Motivation

- Jamming attacks can be real threat to assorted communications.
- From jammer's perspective, a more efficient and powerful jamming system is desired while majority of jamming/anti-jamming publications focus on anti-jamming [Pirayesh and Zeng, 2021].
- From anti-jammer's perspective, current intelligent anti-jamming framework are not designed to prevent from smart jammer (self-learning jammers) [Xu et al., 2020].
- Study of self-learning jammers leads to better understanding of jammers' learning behavior, thus possible improved defense mechanism

Objective: A Multi-Jammer System based on Reinforcement Learnring that

- 1. Adapts to unknown environment
- 2. Learns to improve its jamming success rate

System Model-Assumptions and Notations

- Sender S and Receiver R. At each time t.
 - M available channels
 - Single-band transmission, the sender S choose current channel $C_S^{(t)}$ to send signals.
 - Multi-band transmission, the sender S choose current channels $C_{S,\ell}^{(t)}$, and corresponding powers $P_{S,\ell}^{(t)}$, $\ell=1,\ldots,L$, where $L\leq M$.
- Jammers J_i , i = 1, ..., N. At each time t,
 - J_i listens to all channels and gains some information
 - J_i takes actions $A_i^{(t)} = [P_i^{(t)}, C_i^{(t)}]$, where $P_i^{(t)}$ and $C_i^{(t)}$ are current power and channel chosen by the jammer J_i

System Model-Illustration

Figure 1: Multi-Jamming Wireless Communication System.

System Model-Successful Attack

- Jammer J_j attacks the channel by taking actions $A_i^{(t)} = [P_i^{(t)}, C_i^{(t)}]$.
- Low signal-to-interference-plus-noise ratio (SINR), where

$$SINR^{(t)} = \frac{P_S^{(t)} * h_S}{Noises + \sum_{i=1}^{N} P_i^{(t)} * h_i * I(C_i^{(t)} = C_S^{(t)})}.$$

 h_S and h_i are power gains from sender and jammer J_i respectively. It's unrealistic for jammer to know true SINR from receiver, thus we need an estimation of SINR.

- Instant Success, $G^{(t)} = \mathbb{I}\left(\mathsf{SINR}^{(t)} < au\right)$, where au is a pre-defined threshold.
- Instant Reward: $R^{(t)} = B * \left(\log_2(1 + \mathsf{SNR}^{(t)}) \log_2(1 + \mathsf{SINR}^{(t)})\right) \mathsf{Cost}_p * \sum_{i=1}^N P_i^{(t)}$, where B is the bandwidth (default B = 10 in the simulation), Cost_p is the cost of unit power of jammers.

Reinforcement Learning

 Reinforcement learning algorithms allows an agent to learn by interacting with the environment to maximize its cumulative received rewards.

Figure 2: Reinforcement Learning.

Reinforcement Learning

- Key elements of reinforcement learning
 - Environment with internal state $s_t \in \mathcal{S}$
 - Agent's possible action: $a_t \in \mathcal{A}$
 - Agent's policy: $\pi: \mathcal{S} \to \mathcal{A}$
 - State transition: $p: \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{S}$
 - Reward function: $R: \mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$
- Goal of RL agent is to maximize cumulative rewards (i.e., selecting a policy to maximize the Q-function/action-value function/value function):

$$\max_{\pi} Q^{\pi}(s_t, a_t) = \max_{\pi} \mathbb{E}\Big(\sum_{t=0}^{\infty} \gamma^t R^{(t)} | s_t, a_t; \pi\Big).$$

Multi-agent Reinforcement Learning

- Reinforcement learning algorithm is single agent. However, we want to build and study
 the behavior of a system of multiple collaborative jammers. Multi-agent reinforcement
 learning algorithm is necessary
- Multi-agent Reinforcement Learning:
 - Training: Centralized / Distributed
 - Execution: Centralized / Distributed
- Centralized Training/Execution requires perfect communication in real time. This is rare and expensive. We choose distributed training/ distributed execution MARL.

Multi-Agent Deep Q-Network (MADQN) Jammers

- Team reward for jammers:
 - Amount of blocked channel: $B * \left(\log_2(1 + \mathsf{SNR}^{(t)}) \log_2(1 + \mathsf{SINR}^{(t)}) \right)$
 - Jamming is not free: Cost for jamming power Cost_p
 - $R^{(t)} = B * \left(\log_2(1 + \mathsf{SNR}^{(t)}) \log_2(1 + \mathsf{SINR}^{(t)}) \right) \mathsf{Cost}_p * \sum_{i=1}^N P_i^{(t)}$
- For each jammer:
 - Individual reward perceived by agent $R^{(t)} = B * \left(\log_2(1 + \mathsf{SNR}) \log_2(1 + \mathsf{SINR}^{(t)}) \right) \mathsf{Cost}_p * P_i^{(t)}$
 - Deep Q-Network for value function
 - Double Q-Network as fixed target network and actor network for convergence and counteract overestimation problem in initial learning period
 - · Prioritized experience replay for faster learning and efficiency of data

Agent's experience at time t $\rightarrow (a_t, s_t, r_{t+1}, s_{t+1})$

Experimental Design

We have tested our model under different scenarios. To avoid being jammed, we assume the sender chooses different strategies to hop across multiple channels.

- 1. Single-Band Transmission
 - Sweep Type, $C_S^{(t)} = t\%N$
 - Pulse Type, $C_{S,t} = \begin{cases} 5, & \text{if } t\%N \leq 2; \\ 1, & o.w. \end{cases}$
 - Autoregressive Type,

$$C_{S,t} = \begin{cases} C_{S,t-1} + i\%N, & \text{if } C_{S,t-1}\%2 = 0\\ C_{S,t-1} - i\%N, & \text{if } C_{S,t-1}\%2 = 1\\ X_t \in \{1, N\}, & \text{if } C_{S,t-1} > N, & \text{where } p(X_t = 1) = 0.1 \text{ and } p(X_t = N) = 0.9\\ X_t \in \{1, N\}, & \text{if } C_{S,t-1} < 1, & \text{where } p(X_t = 1) = 0.9 \text{ and } p(X_t = N) = 0.1 \end{cases}$$

- Random Type, $C_S^{(t)} = \text{Uniform}(1, ..., N)$
- 2. Multi-Band Transmission Sweep, Pulse and Autoregressive Types

Experimental Design

We consider two evaluation metrics:

- 1. Instant Success Rate, $G^{(t)} = \mathbb{I}\left(\mathsf{SINR}^{(t)} < \tau\right)$, where τ is taken as a half value of maximum SINR.
- 2. Instant Reward, $R^{(t)} = B * \left(\log_2(1 + \mathsf{SNR}^{(t)}) \log_2(1 + \mathsf{SINR}^{(t)})\right) \mathsf{Cost}_p * \sum_{i=1}^N P_i^{(t)}$, where B = 10 and $\mathsf{Cost}_p > 0$ denotes the cost of power by each jammer.

We compare the performance of five different type of adversaries:

- Random jamming J_{Rand}
- Greedy Adversary J_{Gre}
- ullet Single-agent jamming J_{Single}
- Multi-agent jamming J_{Multi}
- Multi-agent Greedy RL-agent J_{GreRL}

Experimental Design

- Power of sender P_S
- Power sets of jammers, $P_J = [0, 1, 3, 5]$
- Number of available channels, M = 5
- Number of used channels for mult-channel case, L=2
- Number of jamming agents (adversaries), N=3

Single-Channel, Sweep-Type Sender

At each time, the sender picks one channel by $C_S^{(t)} = t\%M$. Note M = 5 and constant power $P_S = 5$.

Single-Channel, Sweep Type Sender - Success Rate

Figure 3: Performance of Jamming vs. Discrete Time Under Sweep Changes of a Single Channel.

Single-Channel, Sweep Type Sender: Instant Rewards

Figure 4: Performance of Jamming vs. Discrete Time Under Sweep Changes of a Single Channel.

Multi-Channel, Sweep Type Sender

At each time t, the sender picks channels $[C_{S,1}^{(t)}, C_{S,2}^{(t)}]$ by $C_{S,\ell}^{(t)} = (t+\ell)\%M$. Note that constant power $P_S = [1,5]$ and the number of total available channels M=5.

Multi-Channel, Sweep Type Sender: Success Rates

Figure 5: Performance of Jamming vs. Discrete Time Under Sweep Changes of Multi-Channel.

Multi-Channel, Sweep Type Sender: Instant Rewards

Figure 6: Performance of Jamming vs. Discrete Time Under Sweep Changes of Multi-Channel.

Single-Channel, Pure Random Type Sender

Figure 7: Performance of Jamming vs. Discrete Time Under Random Changes of a Single Channel.

Performance Overview: Averaged Success Rates

	Random	Greedy	Greedy RL	Single RL	Multi RL
Sweep-Single	0.378	0.445	0.552	0.771	0.927
Sweep-Multi	0.579	0.358	0.620	0.879	0.939
Pulse-Single	0.374	0.416	0.384	0.768	0.923
Pulse-Multi	0.698	0.431	0.718	0.867	0.959
AR-Single	0.404	0.607	0.694	0.792	0.927
AR-Multi	0.503	0.364	0.393	0.687	0.845

Table 1: Success Jamming Rate for Various Jammers Under Assorted Communication Scenarios.

- Greedy: Record average reward of its actions and choose the action with the highest history reward (Variation of Multi-Armed Bandit problem)
- Greedy RL: ϵ -greedy RL agent with $\epsilon=0$ (Skip the exploration part in exploration/exploitation dilemma)

Experimental Results

- In different scenarios, multi-agent jamming outperforms single-agent jamming, and gain much in multi-channel cases.
- With low cost of unit jamming power, the multi-agent jamming benefits more advantages than single-agent jamming.
- More realistic simulations need to be considered.

Future Work

- Estimation of SNR and SINR under realistic cases
- Multi-agent jamming that each jammer can communicates with each other
 - Jammers can choose their actions based on communicating with each other in a given jammer communication network
 - Jammers can jam in more than one channel
- Centralized multi-agent jamming

References L

Pirayesh, H. and Zeng, H. (2021).

Jamming Attacks and Anti-Jamming Strategies in Wireless Networks: A Comprehensive Survey.

Xu, J., Lou, H., Zhang, W., and Sang, G. (2020).

An intelligent anti-jamming scheme for cognitive radio based on deep reinforcement learning.

IEEE Access. 8:202563-202572.