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Embarrassingly Parallel MCMC
1 Partition data into m subsets
2 Run MCMC independently in parallel on
each subset with your favorite algorithm

3 Aggregate the sub-chains (sub-posteriors) by
some algorithm

Introduction

The modern scale of data has brought new challenges
to Bayesian inference. In particular, conventional
MCMC algorithms are computationally very expen-
sive for large data sets. A promising approach is the
embarrassingly parallel MCMC (EP-MCMC).
Existing EP-MCMC algorithms are limited by approx-
imation accuracy and difficulty in resampling. Here
we propose a new EP-MCMC algorithm PART that
solves these problems. The new algorithm applies
random partition trees to combine the subset pos-
terior draws, which is distribution-free, easy to resam-
ple from and can adapt to multiple scales.

Features of PART
•Fast sub-posterior density estimation
•Efficient density aggregation
•Efficient resampling

Related Works

• Simple averaging and Weighted averaging
(Consensus Monte Carlo [1]): weights are
optimally chosen for a Gaussian posterior.

• Weierstrass rejection sampler: subset
posterior samples are passed through a rejection
sampler based on the Weierstrass transform [2].

• Parametric density product: a product of
Laplacian approximations to sub-posteriors [3].

• Nonparametric/Semiparametric density
product: a product of kernel density estimates (or
its semiparametric variant) for subset
posteriors [3], which is sampled with an
independent Metropolis chain.

PART Algorithm

PART relies on the product density equation (PDE). AssumingX is the observed data and θ is the parameter
of interest, when the observations are iid conditioned on θ, for any partition of X = X (1)∪X (2)∪· · ·∪X (m),
then

p(θ|X) ∝ π(θ)p(X|θ) ∝ p(θ|X (1))p(θ|X (2)) · · · p(θ|X (m)), (1)
if the prior on the full data and subsets satisfy π(θ) = ∏m

i=1 πi(θ).

Step 1: Space Partitioning

Since the full data posterior is p(θ|X) ∝
π(θ)∏mi=1 p(X (i)|θ) ∝ ∏m

i=1 f
(i)(θ), We use a ran-

dom partition tree or multi-scale histogram to
estimate each sub-posterior density f (i)(θ).
Let FK be the collection of all Rp-partitions formed
by K disjoint rectangular blocks, where a rectangular
block takes the form of Ak=(lk,1, rk,1]× (lk,2, rk,2]×
· · · (lk,p, rk,p] ⊆ Rp for some lk,q < rk,q. A K-block
histogram is then defined as

f̂ (i)(θ) =
K∑
k=1

n
(i)
k

N |Ak|
1(θ ∈ Ak), (2)

where {Ak : k = 1, 2, · · · , K} ∈ FK are the blocks
and N, n(i)

k are the total number of posterior samples
on the ith subset and of those inside the block Ak

respectively (assuming the same N across subsets).
A random partition tree is built like a decision tree by
recursively (1) randomly selecting a dimension and
(2) choosing an optimal cutting point by φ(θ) to bi-
sect that dimension, until the probability or area of a
block drops below a threshold.

We consider two choices
of the cutting point.
ML-tree Picking the
point that maximizes the
empirical likelihood.
•# of blocks adapted to
complexity.

•Search in O(n log n).
KD-tree Picking the
median.
•Split into two blocks
with equal probability.

•O(log n)

Step 2: Density Aggregation

By constraining all trees to take the same partition-
ing {Ak}, the aggregated density is still a tree with
the same structure. It can be computed by block-wise
multiplication and a renormalization in O(MK).

p̂(θ|X) = 1
Z

m∏
i=1
f̂ (i)(θ) = 1

Z

K∑
k=1

(
m∏
i=1

n
(i)
k

|Ak|

)
1(θ ∈ Ak) =

K∑
k=1

wkgk(θ),

where Z = ∑K
k=1

∏m
i=1 n

(i)
k /|Ak|m−1 is the normalizing

constant, wk’s are the updated weights, and gk(θ) =
unif(θ;Ak) is the block-wise distribution.

Why not Kernel Density Estimate?

O(nm) mixture components — very slow mixing.

Variance Reduction & Smoothing

Random Tree Ensemble Inspired by random
forests, the full posterior is estimated by averaging
T independent trees, which are built in parallel. Re-
sampling from the aggregated posterior consists of
1 choosing a tree uniformly at random
2 sampling a block k by weight wk
3 sampling θ ∼ gk(θ).
Local Gaussian Smoothing The blockwise uni-
form distribution can be replaced by a Gaussian dis-
tribution gk = N(θ;µk,Σk), with mean and covari-
ance estimated “locally” by samples within the block.
A multiplied Gaussian approximation is used: Σk =
(∑m

i=1 Σ̂(i)−1
k )−1, µk = Σk(

∑m
i=1 Σ̂(i)−1

k µ̂
(i)
k ), where Σ̂(i)

k

and µ̂(i)
k are estimated with the ith subset.

Toy Example

Figure 1: Inferring the mean of a mixture of two Gaussians.

Bayesian Logistic Regression

Synthetic Dataset N = 50, 000 observations
in p = 50 dimensions, split into m = 40 sub-
sets. The posterior concentration ratio is defined as
r =

√∑
j ‖θ̂j − θ∗‖2

2/
∑
j ‖θj − θ∗‖2

2.
Method RMSE DKL(p‖p̂) DKL(p̂‖p) r

PART (KD) 0.587 3.95× 102 6.45× 102 3.94
PART (ML) 1.399 8.05× 101 5.47× 102 9.17
average 29.93 2.53× 103 5.41× 104 184.62
weighted 38.28 2.60× 104 2.53× 105 236.15
Weierstrass 6.47 7.20× 102 2.62× 103 39.96
parametric 10.07 2.46× 103 6.12× 103 62.13
nonparametric 25.59 3.40× 104 3.95× 104 157.86
semiparametric 25.45 2.06× 104 3.90× 104 156.97

PART-KD

PART-ML
PART-KD

PART-ML
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