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Embarrassingly Parallel MCMC

o Partition data into m subsets

®Run MCMC independently in parallel on
each subset with your favorite algorithm

© Aggregate the sub-chains (sub-posteriors) by
some algorithm

Introduction

The modern scale of data has brought new challenges
to Bayesian inference. In particular, conventional
MCMC algorithms are computationally very expen-
sive for large data sets. A promising approach is the

embarrassingly parallel MCMC (EP-MCMC).
Existing EP-MCMC algorithms are limited by approx-

imation accuracy and difficulty in resampling. Here
we propose a new EP-MCMC algorithm PART that

solves these problems. The new algorithm applies
random partition trees to combine the subset pos-
terior draws, which is distribution-free, easy to resam-
ple from and can adapt to multiple scales.

Features of PART

= Fast sub-posterior density estimation

« Efficient density aggregation

« Efficient resampling

Related Works

- Simple averaging and Weighted averaging
(Consensus Monte Carlo [1]): weights are
optimally chosen for a Gaussian posterior.

« Weierstrass rejection sampler: subset
posterior samples are passed through a rejection
sampler based on the Weierstrass transform [2].

« Parametric density product: a product of
Laplacian approximations to sub-posteriors [3].

- Nonparametric/Semiparametric density
product: a product of kernel density estimates (or
its semiparametric variant) for subset
posteriors [3], which is sampled with an

independent Metropolis chain.
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PART Algorithm

PART relies on the product density equation (PDE). Assuming X is the observed data and @ is the parameter
of interest, when the observations are iid conditioned on 6, for any partition of X = XWuX®y...uXxm),

then

p(0]X) o< m(0)p(X0) o p(O| X )p(0]X ) - p(] X ™), (1)
if the prior on the full data and subsets satisfy 7(6) = 1%, m;(0).

Step 1: Space Partitioning

Since the full data posterior is p(0]X)
()17, p(XD]0) oc 17, f9(0), We use a ran-

(}
dom partition tree or multi-scale histogram to
estimate each sub-posterior density f7)(6).
Let Fi be the collection of all RP-partitions formed
by K disjoint rectangular blocks, where a rectangular
block takes the form of Ap=(lx.1,7%1] X (lg.2, Tk 2| X
o (lgpy Tkp] € RP for some I, < 74 A K-block

histogram is then defined as

K (7)
P () — "

where {A; : k=1,2,--- , K} € Fi are the blocks
and /V, n,(f) are the total number of posterior samples
on the i™ subset and of those inside the block A,
respectively (assuming the same N across subsets).
A random partition tree is built like a decision tree by
recursively (1) randomly selecting a dimension and
(2) choosing an optimal cutting point by ¢(#) to bi-
sect that dimension, until the probability or area of a
block drops below a threshold.

We consider two choices
of the cutting point.
ML-tree Picking the
point that maximizes the
empirical likelihood.

« # of blocks adapted to
complexity.

= Search in O(nlogn).

KD-tree Picking the
median.

= Split into two blocks
with equal probability.

= O(logn)

Step 2: Density Aggregation

By constraining all trees to take the same partition-
ing { Ay}, the aggregated density is still a tree with

the same structure. It can be computed by block-wise
multiplication and a renormalization in O(M K).

m. K m n(z) K
01 = S T1770) = 53 (T 1) 10 € A = 3 i)

k=1 \i=1

where 7 = >0 | 117, nE?/\Ak\m—l is the normalizing

1=

constant, wy's are the updated weights, and gx(6) =
unif(8; Ay) is the block-wise distribution.

Why not Kernel Density Estimate?

O(n™) mixture components — very slow mixing.

Variance Reduction & Smoothing

Random Tree Ensemble Inspired by random
forests, the full posterior is estimated by averaging
I" independent trees, which are built in parallel. Re-
sampling from the aggregated posterior consists of

@®choosing a tree uniformly at random

@sampling a block £ by weight w;.

@sampling 6 ~ g.(0).

Local Gaussian Smoothing The blockwise uni-
form distribution can be replaced by a Gaussian dis-
tribution g = N(0; g, Xr), with mean and covari-
ance estimated “locally” by samples within the block.

A multiplied Gaussian approximation is used: . =
m <)== m e (2)—1 A (2 (1
( izlzli) 1) L = g z:121(<) M/(<;>)v where Z/i)

and ,&;j) are estimated with the it subset.
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Toy Example
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Figure 1: Inferring the mean of a mixture of two Gaussians.

Bayesian Logistic Regression

Synthetic Dataset N = 50,000 observations
in p = 50 dimensions, split into m = 40 sub-
sets. The posterior concentration ratio is defined as

=[x, 16, — 6713/, 16, — 67|13

Method RMSE DKL(pHﬁ) DKL(ﬁHp) r

PART (KD) 0.587 3.95x 10° 6.45 x 10° 3.94
PART (ML)  1.399 8.05 x 10! 5.47 x 10® 9.17
average 29.93 2.53 x 10° 5.41 x 10" 184.62
weighted 38.28 2.60 x 10* 2.53 x 10° 236.15

Weierstrass 6.47 7.20 x 10° 2.62 x 10° 39.96
parametric 10.07 2.46 x 10° 6.12 x 10° 62.13
nonparametric 25.59 3.40 x 10* 3.95 x 10* 157.86
semiparametric 25.45 2.06 x 10" 3.90 x 10* 156.97

—=—PART-KD —¢—Parametric ——Nonparametric Average
—A—PART-ML Weierstrass Semiparametric —v—Weighted

chain length «10%
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