

Embarrassingly Parallel MCMC

 \bullet Partition data into m subsets

- Run MCMC independently in parallel on each subset with your favorite algorithm
- Aggregate the sub-chains (sub-posteriors) by
 Aggregate the sub-chains (sub-posteriors)
 Aggregate the sub-chains
 some algorithm

Introduction

The modern scale of data has brought new challenges to Bayesian inference. In particular, conventional MCMC algorithms are computationally very expensive for large data sets. A promising approach is the embarrassingly parallel MCMC (EP-MCMC).

Existing EP-MCMC algorithms are limited by approximation accuracy and difficulty in resampling. Here we propose a new EP-MCMC algorithm **PART** that solves these problems. The new algorithm applies random partition trees to combine the subset posterior draws, which is distribution-free, easy to resample from and can adapt to multiple scales.

Features of PART

- Fast sub-posterior density estimation
- Efficient density aggregation
- Efficient resampling

Related Works

- Simple averaging and Weighted averaging (**Consensus Monte Carlo** [1]): weights are optimally chosen for a Gaussian posterior.
- Weierstrass rejection sampler: subset posterior samples are passed through a rejection sampler based on the Weierstrass transform [2].
- Parametric density product: a product of Laplacian approximations to sub-posteriors [3].
- Nonparametric/Semiparametric density **product**: a product of kernel density estimates (or its semiparametric variant) for subset posteriors [3], which is sampled with an independent Metropolis chain.

Parallelizing MCMC with Random Partition Trees

Xiangyu Wang^{*}, Richard (Fangjian) Guo[†], Katherine A. Heller^{†*}, David B. Dunson^{*}

*Department of Statistical Science, [†]Department of Computer Science, Duke University

PART Algorithm

PART relies on the *product density equation (PDE)*. Assuming X is the observed data and θ is the parameter of interest, when the observations are iid conditioned on θ , for any partition of $X = X^{(1)} \cup X^{(2)} \cup \cdots \cup X^{(m)}$, then

 $p(\theta|X) \propto \pi(\theta) p(X|\theta) \propto p(\theta|X^{(1)}) p(\theta|X^{(2)}) \cdots p(\theta|X^{(m)}),$ if the prior on the full data and subsets satisfy $\pi(\theta) = \prod_{i=1}^{m} \pi_i(\theta)$.

Step 1: Space Partitioning

Since the full data posterior is $p(\theta|X) \propto 0$ $\pi(heta) \prod_{i=1}^m p(X^{(i)}| heta) \propto \prod_{i=1}^m f^{(i)}(heta)$, We use a random partition tree or multi-scale histogram to estimate each sub-posterior density $f^{(i)}(\theta)$.

Let $\mathcal{F}_{\mathcal{K}}$ be the collection of all \mathbb{R}^p -partitions formed by K disjoint rectangular blocks, where a rectangular block takes the form of $A_k = (l_{k,1}, r_{k,1}] \times (l_{k,2}, r_{k,2}] \times$ $\cdots (l_{k,p}, r_{k,p}] \subseteq \mathbb{R}^p$ for some $l_{k,q} < r_{k,q}$. A K-block histogram is then defined as

$$\hat{f}^{(i)}(\theta) = \sum_{k=1}^{K} \frac{n_k^{(i)}}{N|A_k|} \mathbf{1}(\theta \in A_k), \quad (2)$$

where $\{A_k : k = 1, 2, \cdots, K\} \in \mathcal{F}_{\mathcal{K}}$ are the blocks and $N, n_k^{(i)}$ are the total number of posterior samples on the i^{th} subset and of those inside the block A_k respectively (assuming the same N across subsets). A random partition tree is built like a decision tree by recursively (1) randomly selecting a dimension and (2) choosing an optimal cutting point by $\phi(\theta)$ to bisect that dimension, until the probability or area of a block drops below a threshold.

We consider two choices of the cutting point.

ML-tree Picking the point that maximizes the empirical likelihood.

- # of blocks adapted to complexity.
- Search in $O(n \log n)$.

KD-tree Picking the median.

- Split into two blocks with equal probability.
- $O(\log n)$

 $\hat{p}(t)$

Random Tree Ensemble Inspired by random forests, the full posterior is estimated by averaging T independent trees, which are built in parallel. Resampling from the aggregated posterior consists of

Local Gaussian Smoothing The blockwise uniform distribution can be replaced by a Gaussian distribution $g_k = N(\theta; \mu_k, \Sigma_k)$, with mean and covariance estimated "locally" by samples within the block. A multiplied Gaussian approximation is used: $\Sigma_k =$ $(\sum_{i=1}^{m} \hat{\Sigma}_{k}^{(i)-1})^{-1}, \mu_{k} = \Sigma_{k}(\sum_{i=1}^{m} \hat{\Sigma}_{k}^{(i)-1} \hat{\mu}_{k}^{(i)}), \text{ where } \hat{\Sigma}_{k}^{(i)}$ and $\hat{\mu}_{k}^{(i)}$ are estimated with the i^{th} subset.

(1)

Synth in p

sets. $r = \sqrt{}$

Met PAF PAF aver weig Weie

PART-KD 10^{6} D_{XT}^{T}

By constraining all trees to take **the same** partitioning $\{A_k\}$, the aggregated density is still a tree with the same structure. It can be computed by block-wise multiplication and a renormalization in O(MK).

Step 2: Density Aggregation

$$\theta(X) = \frac{1}{Z} \prod_{i=1}^{m} \hat{f}^{(i)}(\theta) = \frac{1}{Z} \sum_{k=1}^{K} \left(\prod_{i=1}^{m} \frac{n_k^{(i)}}{|A_k|} \right) \mathbf{1}(\theta \in A_k) = \sum_{k=1}^{K} w_k g_k(\theta)$$

where $Z = \sum_{k=1}^{K} \prod_{i=1}^{m} n_k^{(i)} / |A_k|^{m-1}$ is the normalizing constant, w_k 's are the updated weights, and $g_k(\theta) =$ unif $(\theta; A_k)$ is the block-wise distribution.

Why not Kernel Density Estimate?

 $O(n^m)$ mixture components — very slow mixing.

Variance Reduction & Smoothing

- choosing a tree uniformly at random
- \boldsymbol{O} sampling a block k by weight w_k
- \Im sampling $\theta \sim g_k(\theta)$.

Toy Example

Figure 1: Inferring the mean of a mixture of two Gaussians.

Bayesian Logistic Regression

(nthetic Dataset $N = 50,000$ observations p = 50 dimensions, split into $m = 40$ sub- ts. The posterior concentration ratio is defined as							
$= \sqrt{\sum_j \ \hat{\boldsymbol{\theta}}_j - \boldsymbol{\theta}^*\ _2^2 / \sum_j \ \boldsymbol{\theta}_j - \boldsymbol{\theta}^*\ _2^2}.$							
Method	RMSE	$D_{KL}(p$	$\ \hat{p} angle$	D_{KL}	$(\hat{p} p)$	r	
PART (KD)	0.587	$3.95 \times$	10^{2}	6.45	$\times 10^2$	3.94	
PART (ML)	1.399	8.05 imes	10^1	5.47	$ imes 10^2$	9.17	
average	29.93	$2.53 \times$	10^{3}	5.41	$\times 10^4$	184.62	
weighted	38.28	$2.60 \times$	10^{4}	2.53	$\times 10^5$	236.15	
Weierstrass	6.47	$7.20 \times$	10^{2}	2.62	$\times 10^3$	39.96	
parametric	10.07	$2.46 \times$	10^{3}	6.12	$\times 10^3$	62.13	
nonparametric	25.59	$3.40 \times$	10^{4}	3.95	$\times 10^4$	157.86	
semiparametric	25.45	$2.06 \times$	10^{4}	3.90	$\times 10^4$	156.97	
PART-KD \rightarrow Parametric \rightarrow N PART-ML \rightarrow Weierstrass \rightarrow S $0^{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_{0}_$	Vonparametric Semiparametri 	Average cWeighted 4 5 $\times 10^4$	$ \begin{array}{c} 6 \\ 4 \\ $	-20	Semiparan Weierstras Average Weighted θ_1 -10	metric ss 0 0 1 2 3	D IL imetric
References							

[1] Steven L Scott, Alexander W Blocker, Fernando V Bonassi, Hugh A Chipman, Edward I George, and Robert E McCulloch.

Bayes and big data: The consensus Monte Carlo algorithm. In EFaBBayes 250 conference, volume 16, 2013.

[2] Xiangyu Wang and David B Dunson. Parallel MCMC via Weierstrass sampler. *arXiv preprint arXiv:1312.4605*, 2013.

[3] Willie Neiswanger, Chong Wang, and Eric Xing. Asymptotically exact, embarrassingly parallel MCMC. In Proceedings of the Thirtieth Conference Annual Conference on Uncertainty in Artificial Intelligence *(UAI-14)*, 2014.