DNN-Based Power Amplifier Pre-Distortion for Communications in Contested Environments

Presenter: Yi Feng

Power Amplifier in Communication Systems

- ➤ Hardware limitations can be key issues in efficient communications in complex and contested environments.
- ➤ Power amplifiers (PA) are crucial and most common elements in many hardware implementations.
- Ideal power amplifiers operate linearly.
- Real-world PA encounters many non-linearities.
- ➤ Non-linearity leads to:
 - Spectrum growth
 - Constellation distortion
- > Performance degradation in communications.

Digital Pre-Distortion & PA Modeling

- Digital pre-distortion is an efficient method to compensate PA non-linearities (flexible and re-configurable).
- > Traditional methods: In order to design the pre-distorter, the first step is often to have a good model of PA.
- Classic PA models:
 - Memoryless model, e.g., Saleh
 - Models with memory, e.g., Volterra

Indirect Learning and Direct Learning in Pre-Distorter Design

- Key steps:
- Step 1: Train/fit the model by optimizing the model parameters using the reversed Input-Output PA measurements.
- Step 2: Duplicate the fully trained <u>Post</u>-Distortion model and use it as a <u>Pre</u>-Distortion model.
- Can lead to a biased solution, but still very popular and widely used.

- > Two-stage process:
- Stage 1: First identify and model power amplifier.
- Stage 2: Fixed PA model and identify Predistorter.
- Two networks needed (PD & PA) with special overall training.

Pre-Distorter Design via Normalizing Flow based Neural Network

<u>Pre-distorter design idea:</u>

- Model the non-linearities using reversible neural networks with forward/backward mode.
- Train the network in the forward mode for the power amplifier modeling, and directly use trained neural network in the backward mode as pre-distorter (for power amplifier system inversion).

Reversible Neural Network Structure and PA Datasets

- Gaussian input/output training datasets
- Higher probabilities for selecting larger PA input power data while forming training batch
- Test: OFDM signal samples (4x oversampling)

Construct training sets (input/output of PA) using Wiener model

$$H(z) = 1 + 0.154z^{-1} + 0.077z^{-2},$$

$$|y_s(n)| = \frac{\alpha_a |x(n)|}{1 + \beta_a |x(n)|^2}$$

$$\angle y_s(n) = \frac{\alpha_p |x(n)|^2}{1 + \beta_p |x(n)|^2}$$

$$\alpha_a = 5, \ \beta_a = 1, \ \alpha_p = \pi/3, \ \beta_p = 1.$$

Flow-based Neural Network Predistortion

- Static vs dynamic non-linearities
- Linearization performance

Phase Linearization

Linearized	Mean (degree)	Std (degree)
All region	-0.2468	1.2361
5-25 dBm	-0.2590	0.6009

		Std (degree)
PA signal	3.5753	12.2959

Performance Metrics

TABLE I PERFORMANCE PARAMETERS

	PA	PD-PA
NMSE	-13.9	-32.1
ACPR	-22.7	-26.7
EVM	0.1915	0.0196
Pclip	49.54%	0.83%

Summary

- Proposed a reversible neural network for doing non-linear power amplifier modeling pre-distortion.
- Can be used as *add-ons* to non-linear power amplifiers in the wireless communication systems for linearization improvements (for both static and memory non-linearities).
- ➤ Can provide better performance in communications, e.g., inter-carrier interference reduction, in complex and contested wireless environments.
- > Can be combined with additional PAPR reduction pre-processing techniques, e.g., coding, clipping and filtering.