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ABSTRACT
We propose a second-order (Hessian or Hessian-
free) based optimization method for variational
inference inspired by Gaussian backpropagation,
and argue that quasi-Newton optimization can be
developed as well. This is accomplished by gen-
eralizing the gradient computation in stochastic
backpropagation via a reparameterization trick
with lower complexity. As an illustrative exam-
ple, we apply this approach to the problems of
Bayesian logistic regression and variational auto-
encoder (VAE). Additionally, we compute bounds
on the estimator variance of intractable expecta-
tions for the family of Lipschitz continuous func-
tion. Our method is practical, scalable and model
free. We demonstrate our method on several real-
world datasets and provide comparisons with
other stochastic gradient methods to show sub-
stantial enhancement in convergence rates.

PARAMETER EMBEDDING
Standard multivariate Gaussian distribution has
limited flexibility as an approximate distribution,
we consider a parameter embedding trick with
µ(θ,x),R(θ,x) where θ = (θl)

d
l=1 is the implicit

but interested parameter.
We have similar fast Hessian derivation formula.
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Note that the 1st and 2nd order gradient com-
putations only involve matrix-vector or vector-
vector multiplication, thus leading to an algorith-
mic complexity O(d2z) for each θl.

VARIATIONAL AUTO-ENCODER

We apply these facts to stochastic variational in-
ference. The first model we consider is variational
auto-encoder (VAE), shown in Fig. 1. Basically,
VAE describes an embedding process from the
perspective of a Gaussian latent variable model.
Each data point x follows a generative model
pψ(x|z) constructed by a non-linear transforma-
tion with unknown parameters ψ and a prior dis-
tribution pψ(z). The recognition model qφ(z|x) is
used to approximate the true posterior pψ(z|x),
where φ is similar to the parameters of a varia-
tional distribution.

log pψ(x
(i)) ≥ Eqφ(z|x(i))[log pψ(x

(i)|z)]−DKL(qφ(z|x(i))‖pψ(z)) = L(x(i))
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Figure 1: VAE represented by Deep Neural Nets
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Figure 2: Convergence
Figure 3: Manifold Learning

LOGISTIC REGRESSION

Given a dataset {xi, yi}Ni=1, where yi ∈ {−1, 1} is
the binary label, the Bayesian logistic regression
models the probability of outputs conditional on
features and the coefficients β with an imposed
prior. The likelihood and the prior usually take
the form as

∏N
i=1 g(yix

>
i β) and N (0,Λ) respec-

tively, where g is sigmoid function and Λ is a diag-
onal covariance matrix for simplicity. We can pro-
pose a variational Gaussian distribution q(β|µ,C)
to approximate the posterior of regression param-

eter. If we further assume a diagonal C, a factor-
ized form

∏D
j=1 q(βj |µj , σj) is both efficient and

practical for inference.

L(µ,σ) = Ez∼N (0,I)[log l(µ+ σ � z)]

+
1

2

d∑
i=1

log
σ2
i

σ2
i + µ2

i

,

where l is the likelihood function.
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Figure 4: Convergence

REPARAMETERERIZATION
Consider how to optimize an expectation of the
form Eqθ [f(z|x)], where z and x refer to la-
tent variables and observed variables respec-
tively, and expectation is taken w.r.t distribution
qθ and f is some smooth loss function. Here
we particularly consider dz dimensional Gaus-
sian q = N (z|µ,C), it suffers high cost on 2nd
order derivative, e.g.

∇2
µi,Ck,l

Eq[f(z)] = 0.5 ∗ Eq
[
∇3
zi,zk,zl

f(z)
]

∇2
Ci,j ,Ck,l

Eq[f(z)] = 0.25 ∗ Eq[∇4
zi,zj ,zk,zl

f(z)]

Reparametererization Let q = N (z|µ,RR>),
then z = µ + Rε. We have low cost for deriva-
tive computation (up to 2nd order).

∇2
µ,REN (µ,C)[f(z)] = Eε∼N (0,Idz )

[ε> ⊗H]

∇2
REN (µ,C)[f(z)] = Eε∼N (0,Idz )

[(εεT )⊗H]

where gradient g, Hessian H are evaluated at µ+
Rε in terms of f(z).
These two results w.r.t µ,R make parallelization
possible, and reduce computational cost of the
Hessian-vector multiplication due to the fact that
(A> ⊗B)vec(V ) = vec(AV B).

HESSIAN-VECTOR OPERATION
If d is large, computation of Gθ and Hθ (differ
from g, H above) will be linear and quadratic w.r.t
d, which may be unacceptable. Therefore, we re-
duce the computational complexity w.r.t d.
Let F = EN (µ,C)[f(z)] and reparameterize z
again, then we have
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This trick is actually R-operator and can be im-
plemented by backpropagation.
Since all the gradients are evaluated in ex-
pectation involving intractable integral,
we need Monte Carlo estimation. If f is
an L-Lipschitz differentiable function and
ε ∼ N (0, Idz ), we have Variance Bound
E[(f(ε) − E[f(ε)])2] ≤ L2π2

4 and Bias Bound

P
(∣∣∣ 1
M

∑M
m=1 f(εm)− E[f(ε)]

∣∣∣ ≥ t) ≤ 2e−
2Mt2

π2L2 .


