ABSTRACT

We propose a second-order (Hessian or Hessian-
free) based optimization method for variational
inference inspired by Gaussian backpropagation,
and argue that quasi-Newton optimization can be
developed as well. This is accomplished by gen-
eralizing the gradient computation in stochastic
backpropagation via a reparameterization trick
with lower complexity. As an illustrative exam-
ple, we apply this approach to the problems of
Bayesian logistic regression and variational auto-
encoder (VAE). Additionally, we compute bounds
on the estimator variance of intractable expecta-
tions for the family of Lipschitz continuous func-
tion. Our method is practical, scalable and model
free. We demonstrate our method on several real-
world datasets and provide comparisons with
other stochastic gradient methods to show sub-
stantial enhancement in convergence rates.

REPARAMETERERIZATION

Consider how to optimize an expectation of the
form E,,|f(z|x)], where z and x refer to la-
tent variables and observed variables respec-
tively, and expectation is taken w.r.t distribution
go and f is some smooth loss function. Here
we particularly consider d, dimensional Gaus-
sian ¢ = N(z|u, C), it suffers high cost on 2nd
order derivative, e.g.
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Reparametererization Let ¢ = N(z|u,RR'),
then z = u + Re. We have low cost for deriva-
tive computation (up to 2nd order).

A (1,0) [ (2)] = Eeonr(o,1,, )€ @ H]

e N (0,14.) (e’ ) @ H]

WA (w,C) L (2)] =

where gradient g, Hessian H are evaluated at p
Re in terms of f(z).

These two results w.r.t pu, R make parallelization
possible, and reduce computational cost of the
Hessian-vector multiplication due to the fact that

(A" @ B)vec(V) = vec(AV B).

PARAMETER EMBEDDING

Standard multivariate Gaussian distribution has
limited tlexibility as an approximate distribution,
we consider a parameter embedding trick with
n(0,x), R(0,x) where 8 = (6,)2_, is the implicit
but interested parameter.

We have similar fast Hessian derivation formula.
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Note that the 15t and 2™ order gradient com-

putations only involve matrix-vector or vector-

vector multiplication, thus leading to an algorith-
ic complexity O(d2) for each 6;.

HESSIAN-VECTOR OPERATION

It d is large, computation of Gg and Hg (differ
from g, H above) will be linear and quadratic w.r.t
d, which may be unacceptable. Therefore, we re-
duce the computational complexity w.r.t d.

Let ' = En(uco)lf(z)] and reparameterize z
again, then we have
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This trick is actually R-operator and can be im-
plemented by backpropagation.
Since all the gradients are evaluated in ex-
pectation  involving  intractable  integral,
we need Monte Carlo estimation. If f is
an L-Lipschitz differentiable function and
~ N(0,I; ), we have Variance Bound
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VARIATIONAL AUTO-ENCODER

We apply these facts to stochastic variational in-
ference. The first model we consider is variational
auto-encoder (VAE), shown in Fig. 1. Basically,
VAE describes an embedding process from the
perspective of a Gaussian latent variable model.
FEach data point x follows a generative model
Py (x|z) constructed by a non-linear transforma-
tion with unknown parameters 1 and a prior dis-
tribution p.,(z). The recognition model ¢4 (z|x) is
used to approximate the true posterior p,,(z|x),
where ¢ is similar to the parameters of a varia-
tional distribution.
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Figure 2: Convergence

LOGISTIC REGRESSION

Given a dataset {x;,v;}Y.,, where y; € {—1,1} is
the binary label, the Bayesian logistic regression
models the probability of outputs conditional on
features and the coefficients 3 with an imposed
prior. The likelihood and the prior usually take
the form as Hivzl g(yix; B) and N(0,A) respec-
tively, where g is sigmoid function and A is a diag-
onal covariance matrix for simplicity. We can pro-
pose a variational Gaussian distribution ¢(3|u, C)
;t0 approximate the posterior of regression param-
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Figure 3: Manifold Learning

eter. If we further assume a diagonal C, a factor-

ized form Hle q(Bjlp,0;) is both efficient and
practical for inference.

where [ is the likelihood function.
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