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Distributed Consensus Systems

Leaderless coordination and control for multi-agent systems.

I Robotic and drone networks (rendezvous problem).

I Sensor networks (data fusion - temperature measurement).

I Social networks (reaching a common opinion).
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j

𝑥𝑗(𝑡)

𝑥𝑖(𝑡)
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Mathematical of Modeling Distributed Consensus Systems

A connected graph G = (V , E), a stochastic weight matrix W
and initial vector values x(0).
For all t ≥ 0

xi(t+ 1) = wiixi(t) +
∑
j∈Ni

wijxj(t),

where Ni = {j ∈ V | {i , j} ∈ E} and

wii > 0 , wij > 0 for all j ∈ Ni,

M. DeGroot 1970’s (opinion dynamics), J. Tsitsiklis 1980’s (distributed optimization)

It follows that

lim
t→∞

xi(t) =
[

lim
t→∞

W tx(0)
]
i

= [1v′x(0)]i = lim
t→∞

xj(t) , ∀i , j

where v′ is the Perron-Frobenius left-eigenvector of W .
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Malicious Agents in Distributed Consensus Systems

In practice not all agents are legitimate (truthful), some are
malicious and strategically input malicious values to either:

I prevent consensus,

I deviate the consensus from its true value.
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The Classical Bound

The maximal number malicious agents that can be tolerated:

Legitimate agents can reach consensus iff the number of malicious
agents is less than 1/2 of the network connectivity1.

Proofs:

I Lamport, Pease and Shostak 1980, D. Dolev 1981 (Byzantine, fault
tolerance, an additional condition),

I F. Pasqualetti, A. Bicchi and F. Bullo 2012 (control theory).

Both proofs assume that every legitimate agent knows the

topology of G, and cannot detect malicious agents that only lie

about their initial input values.

1The connectivity of a graph is the maximum number of disjoint paths
between any two vertices of the graph.
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Agents’ Trust Values in Cyberphysical Systems I

Prior works have used the data values to overcome/detect
malicious behavior. The physical aspects of the problem have not
been considered. Namely, the wireless communication channels.

In cyberphysical systems:

I Malicious agents can lie about their location.

I A malicious agent can create many fictitious identities (Sybil
attack).
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Agents’ Trust Values in Cyberphysical Systems II

Each transmitted signal leads to
a received signal characteristics:

I Number of paths, delays.

I Angles of arrival.

I Power order of the angles of
arrival.

I Power of the received
signals. *Guaranteeing spoof-resilient

multi-robot networks, S. Gil et al 2017.
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Agents’ Trust Values in Cyberphysical Systems III

We can generate trust values that captures the event that an agent

I lies about its location
I Location Verification Systems for VANETs in Rician Fading Channels, S.

Yan et al 2016.

I uses a Sybil attack and creates multiple fictitious agents
I Detecting Colluding Sybil Attackers in Robotic Networks using

Backscatters Y. Huang et al 2021.

(Limited to single antenna malicious agents.)

I Guaranteeing spoof-resilient multi-robot networks, S. Gil et al 2017.

(Limited to single antenna malicious agents.)
I The Mason Test: A Defense Against Sybil Attacks in Wireless Networks

Without Trusted Authorities, Liu et al 2015.

(Assumes limited mobility of malicious agents and no beamforming).

We denote by αij(t) ∈ [0 , 1] the instantaneous single sample
trust agent i gives agent j at time a t.
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The Trust Based Distributed Consensus Model

Consider the system[
XL(t+ 1)
XM(t+ 1)

]
=

[
WL(t) WM(t)
Θ(t) Ω(t)

] [
XL(t)
XM(t)

]
,

where |xi(t)|≤ η for every i , j ∈ L ∪M and t ≥ 0.

For every i ∈ L:

xi(t+ 1) = [1−
∑
j∈Ni

W (i , j , t , βij(t))]︸ ︷︷ ︸
wii(t)

xi(t) +
∑

j∈Ni
W (i , j , t , βij(t))︸ ︷︷ ︸

wij(t)

xj(t)

where
I βij(t) = f(αij(0) , . . . , αij(t))

i

j

[𝑥𝑗(𝑡), 𝛼𝑗𝑖(𝑡)]

[𝑥𝑖(𝑡), 𝛼𝑖𝑗(𝑡)]
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The Trust Based Distributed Consensus Model

For every i ∈ L:

xi(t+ 1) = [1−
∑
j∈Ni

W (i , j , t , βij(t))]︸ ︷︷ ︸
wii(t)

xi(t) +
∑

j∈Ni
W (i , j , t , βij(t))︸ ︷︷ ︸

wij(t)

xj(t)

where

I βij(t) = f(αij(0) , . . . , αij(t))

I wii(t) > 0, wij(t) ≥ 0 , j ∈ Ni,
∑

j∈Ni
wij = 1

I wij(t) > 0 , j ∈ Ni ∩M finitely many times a.s.

I wij(t) = 0 , j ∈ Ni ∩ L finitely many times a.s.

i

j

[𝑥𝑗(𝑡), 𝛼𝑗𝑖(𝑡)]

[𝑥𝑖(𝑡), 𝛼𝑖𝑗(𝑡)]
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Research Objectives

Objective I - Finite correct classification time

Establish characteristics of αij(t), and functions βij(t) that lead to
a finite detection time for the correct classification of legitimate
and malicious agents almost surely.

Objective II - Convergence of the consensus protocol

Choose weights W (i , j , t , βij(t)) that allow convergence in spite
of the presence of adversarial attacks.

Objective III - Bounded deviation for average consensus

We bound the deviation from the true consensus value, ∆ (δ)
that can be achieved with a probability at least 1− δ.
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Cumulative Trust Values

We assume that:

I αij(t) are statistically independent.

I There exist scalars c < 0 and d > 0 such that2

c = cij = E(αij(t))− 1/2 for all i ∈ L , j ∈ Ni ∩M,

d = dij = E(αij(t))− 1/2 for all i ∈ L , j ∈ Ni ∩ L.

To capture the history of observations αij(t), we define:

βij(t) =

t∑
k=0

(αij(k)− 1/2) for t ≥ 0 , i ∈ L , j ∈ Ni.

Agent i classifies agent j as legitimate if βij(t) ≥ 0 and malicious
otherwise.

2For the sake of simplicity of presentation.
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Finite Correct Classification Time I

Lemma

For every t ≥ 0 and i ∈ L

Pr (βij(t) < 0) ≤ exp(−2(t+ 1)d2) , j ∈ Ni ∩ L,

Pr (βij(t) ≥ 0) ≤ exp(−2(t+ 1)c2) , j ∈ Ni ∩M.

This is an immediate result of the Chernoff-Hoeffding Inequality.

Proposition

There exists a (random) finite time instant Tf > 0 such that every
legitimate agent i correctly classifies its neighbors for all t ≥ Tf
almost surely.

This proposition follows by the Borel-Cantelli Lemma
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The Modified Trust Based Weights

Define the time dependent trusted neighborhood for agent i:

Ni(t) = {j ∈ Ni : βij(t) ≥ 0},

We choose for all i ∈ L,

wij(t) =


1{t≥T0−1} ·min

{
1
κ , 1
|Ni(t)|+1

}
if , j ∈ Ni(t),

0 if , j /∈ Ni(t) ∪ {i},
1−

∑
m∈Ni

wim(t) if j = i.
,

where κ > 0 is a limiting effect constant.
Up to time T0 agents measure the trust values of their neighbors
but don’t update their data values.
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The Data Values of the Legitimate Agents

Recall that:

[
XL(t+ 1)
XM(t+ 1)

]
=

[
WL(t) WM(t)
Θ(t) Ω(t)

] [
XL(t)
XM(t)

]
.

Thus,

xL(t) = x̃L(t) + φM(t),

where3

x̃L(t) =

(
t−1∏

k=T0−1

WL(k)

)
xL(0),

and

φM(t) =

t−1∑
k=T0−1

(
t−1∏

l=k+1

WL(l)

)
WM(k)xM(k).

3Note that WL(k) can be substochastic.
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Convergence of the Consensus Protocol I

Define a matrix WL such that for every i , j ∈ L,

[WL]ij =


min

{
1
κ , 1
|Ni|+1

}
if j ∈ Ni ∩ L,

1−min
{
|Ni∩L|
κ , |Ni∩L|

|Ni|+1

}
if j = i,

0 otherwise.

Then, almost surely there exists a (random) finite time Tf such
that

∞∏
k=T0−1

WL(k) = lim
k→∞

W
k−max{Tf ,T0}
L︸ ︷︷ ︸
1v′

max{Tf ,T0}−1∏
k=T0−1

WL(k),

and WM(t) = 0 for every t > Tf .
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Convergence of the Consensus Protocol II

Proposition

Almost surely, there exists a random variable z(T0) such that

lim
t→∞

xL(t) = z(T0)1,

where z(T0) is in the convex hull of the initial values
xi(0) , i ∈ L ∪M, and its distribution depends on the starting
time T0 of the data passing phase.
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The Deviation from Nominal Consensus Value

Theorem

Given an error level δ > 0, we have the following result

Pr

(
max
i∈L

lim sup
t→∞

∣∣[xL(t)− 1v′xL(0)
]
i

∣∣ ≤ ∆max(T0 , δ)

)
≥1−δ,

where ∆max(T0 , δ) = 2 [g̃L(T0 , δ) + g̃M(T0 , δ)] ,

g̃L(δ) =
η|L|2

δ
· exp(−2T0d

2)

1− exp(−2d2)
+
η|L||M|

δ
· exp(−2T0c

2)

1− exp(−2c2)
,

and

g̃M(T0 , δ) =
η|L||M|
δ · κ

· exp(−2T0c
2)

1− exp(−2c2)
.

xL(t) = x̃L(t) + φM(t)⇒
|xL(t)− 1v′xL(0)|i≤ |x̃L(t)− 1v′xL(0)|i+|φM(t)|i.
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A Few Words regarding the Expected Convergence Time I

Proposition

Assume that j ∈ Ni ⇔ i ∈ Nj (symmetric connectivity of
legitimate agents). Then, for every T0 ≥ 0 and t ≥ T0, we have

E
(∥∥xL(t)− 1v′xL(0)

∥∥
v

)
≤ 2

(
t− T0

2
+ 1

)
ρ

t−T0
2

2 η +

(
|L|2exp(−(t+ T0 + 2)d2)

1− exp(−2d2)

+
|L||M|exp(−(t+ T0 + 2)c2)

1− exp(−2c2)

)
2η

= O
(
|L|·max {|L|,|M|} · te−γt

)
,

where ρ2 < 1 is the second largest eigvenvalue modulus of WL and
v > 0 be the stochastic Perron vector satisfying v′WL = v′.
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Numerical Results

I |L|= 15 legitimate agents

I |M|= 5 , 15 , 30

I η = 5, κ = 10;

I E(αij) = 0.55 for i ∈ L , j ∈ Ni ∩ L,

I E(αij) = 0.45 for i ∈ L , j ∈ Ni ∩M,

I αij ∼ U
[
E(αij)− `

2 , E(αij) + `
2

]
I ` = 0.2 , 0.4 , 0.6

figures_consensus/Connectivity_graph_legitimate.png

Classical bound must fulfill |M|< 3+|M|
2 ⇒ |M|< 3.
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Numerical Results - Maximum Deviation Input I

(a) |M|= 5, ` = 0.2 (b) |M|= 15, ` = 0.4

21/24



Numerical Results - Drift Input I

(a) |M|= 5, ` = 0.2 (b) |M|= 30, ` = 0.6
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Conclusions and Future Work

I Physical based trust values to brake the current known bound

I Modified weight matrix - based on trust values

I Finite detection time a.s., convergence, deviation from true
consensus value

I Future work
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Thank You!

Questions? Collaboration ideas?
Email: myemini@princeton.edu
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