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Future Wireless Networks
Require agility and robustness



Rethinking cellular and ad-hoc network design

Utilizing more spectrum (mmw)

Very low power radios

Massive MIMO (multiple antennas)

New PHY and MAC techniques

Multihop routing

 Edge computing and caching

 Fog optimization

Machine learning

Enabling Technologies for Future Wireless Networks
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ML in Wireless Systems
 We have shown that ML “trumps theory”:

 In equalization of unknown/complex channels
 In joint source and channel coding of text 

 Application of ML to wireless system design
 Detection in unknown channels (molecular, mmW, nonlinear)
 Modulation and detection 
 Encoding and decoding
 MIMO transmission and reception
 Joint source and channel encoding/decoding
 Network resource allocation

 ML algorithm and training optimization needed
 That is where comm/network theory come in



ML in PHY layer design

• PHY transmitter and receiver design typically based 
on a mathematical channel mode
• Accurate channel models may not be known
• Models may not enable computationally efficient PHY 

algorithms (decoding, detection, message recovery)

• How does an ML-based approach solve this?
• No need for an underlying model or all its parameters
• Learn the design directly from data
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BER for Poisson/Molecular 
Channels

 SBRNN outperforms VD with perfect 
CSI if 𝑀𝑀 is less than the memory order

 SBRNN outperforms VD with CSI 
estimation error

 Lower 𝑀𝑀 and 𝐿𝐿 correspond to lower 
complexity in the detection algorit



mmWave Channel Model
 Channel Model*
 Sparse time clustering
 Long memory

 Massive MIMO
 Compensates for severe pathloss
 Enables aggressive spatial reuse
 Needs to handle highly directional links

 Hard to estimate accurate CSI
 Prohibitive complexity of ML detection

* Samimi et al. 3-D millimeter-wave statistical channel model for 5G wireless system design. 



Uplink Detection with SBRNN
 Single cell mmw uplink (sparse)
 The BS has multiple antennas
 Each device has a single antenna

 Can be extended to multi-antenna case
 Use Sliding BRNN detector to detect the

received symbols at the BS without any
knowledge of CSI



Performance: SBRNN vs Viterbi
Parameter Value

Carrier Frequency 28 GHz

Bandwidth 800 MHz

Transmit Power 11 dBm

Tx-Rx Separation distance 60 m

Tx-Rx Antenna Gains 24.5 dBi

Modulation Scheme BPSK

 SBRNN is close to the optimal Viterbi,
and outperforms Viterbi-cut

 SBRNN trained on a single SNR range
generalizes well to other SNRs.

4 RX Antennas 128 RX Antennas



Performance: SBRNN w/ CSI imperfection



Training Overhead and Run Time Efficiency

 Training: # of samples needed for 90% detection accuracy
 Testing: run time of detecting one 200-bit message1

Receive Antennas Sliding BRNN Viterbi

4 0.244 s 12.461 s
128 0.264 s 52.681 s



ViterbiNet: learn just p(y|x)





Results
Top Plot:
• Sentences with similar meaning 

are placed close together in the 
code space

Bottom Plot:
• 400 bits per sentence,

• erasure rate of 0.05

• Reed-Solomon codes are used 
when separate source and channel 
code design is used (black, red, 
and blue)

• Considerable number of word 
errors for deep learning may be 
word replacements that preserve 
the meaning of the sentence



mmWave Massive MIMO

 mmWaves have large attenuation and path loss
 Massive MIMO removes attenuation, fading, interference
 Bottlenecks: channel estimation, complexity, propagation
 Ideal beamforming disappears with shadowing
 Need multihop/mesh networks

Hundreds
of antennas

Dozens of devices10s of GHz of Spectrum



Blind MIMO Decoding via Vertex Hopping
Given samples in the form:

𝒚𝒚 = 𝑨𝑨𝑨𝑨 + 𝒆𝒆
𝑨𝑨~𝒩𝒩(0,1)𝑛𝑛 × 𝑛𝑛, 𝒆𝒆 ~𝒩𝒩(0,𝜎𝜎2)𝑛𝑛 × 𝑛𝑛.
𝑥𝑥 is drawn from an MPAM or BPSK 

constellation (source must be hypercubic).
Rich scattering, small MIMO (2 ≤ 𝑛𝑛 ≤ 12).

In a block-fading environment, estimate 𝑨𝑨 and recover 
𝑨𝑨 given only 𝑘𝑘 samples of 𝒚𝒚

Blind MIMO Decoding



Fitting a Parallelepiped --- Algorithms

 (∗) is a non-convex optimization problem
 Constrained gradient descent works but is slow.
 The Vertex Hopping algorithm uses concepts from solving 

mixed-integer linear programming to solve (∗).

log |det𝑼𝑼|

𝑼𝑼 𝒚𝒚𝑖𝑖 ∞ ≤ 1 + 𝑐𝑐, 𝑖𝑖 = 1,… ,𝑘𝑘

maximize

subject to

𝑼𝑼
(∗)

Gaussian noise will not 
greatly distort this shape



Runtime Performance
Vertex Hopping* Gradient Descent

n k Pr[success] Time (s) Pr[success] Time (s)
2 8 1.0 1.83 × 10−5 0.99 3.01 × 10−2

3 13 1.0 6.46 × 10−5 0.99 6.33 × 10−2

4 18 1.0 1.74 × 10−4 0.99 0.13
5 18 1.0 2.96 × 10−4 0.97 0.30
6 22 1.0 8.52 × 10−4 0.93 0.59
8 30 0.99 4.99 × 10−3 0.80 3.5
10 45 0.99 5.36 × 10−2 0 -
12 60 0.99 3.70 × 10−1 0 -

†

*
†Implemented in Rust
MATLAB’s fmincon



AWGN and Fading Performance



Network Optimization Challenges
Algorithmic complexity

 Frequency allocation alone is NP hard
 Also have MIMO, power control, hierarchical networks: 
NP-really-hard

 Advanced optimization tools needed, including a 
combination of centralized (cloud) distributed, and locally 
centralized (fog) control

 ML can also play a role

Macrocell BS

Small cell BS

Cloud Optimization

Fog 
Optimization

Next challenge: 
optimizing caching 
and edge computing



Fog-Optimization vs. Centralized
 Use clustering technique to cluster BSs, then optimize 

power allocation to maximize uplink sum rate
 Consider multiple clustering techniques (not much difference)
 Nonconvex approximation for optimization

10x loss

Single-User Decoding per BS Joint Decoding in Virtual Cell

55% loss



Summary
 Future wireless networks must support high rates, 

extreme energy efficiency, and low latency
 Small cells, multihop routing and massive MIMO are key 

enablers. 
 Network must be robust to rapidly-varying channels and 

adversaries
 Machine learning and optimization is a promising new tool to 

use in receiver design, multiple access, and resource 
allocation

 Cloud and fog-based networking has many open 
challenges, particularly edge vs. cloud optimization
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