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Wireless System Design using
Optimization and Machine Learning




Future Wireless Networks

Require agility and robustness




- Enabling Technologies for Future Wireless Networks

® Rethinking cellular and ad-hoc network design

Base Station Cooperation

* Utilizing more spectrum (mmw) /’t
. -;/"i\
* Very low power radios 0 O
* Massive MIMO (multiple antennas)

* New PHY and MAC techniques
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® Multihop routing iy § f
b i g L L Hundreds
U of antennas

® Edge computing and caching

* Fog optimization | J
® Machine learning / J t [ ]
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~ ML in Wireless Systems =

input layer
hidden layer 1 hidden layer 2

We have shown that ML “trumps theory”:
* In equalization of unknown/complex channels
e |n joint source and channel coding of text

Application of ML to wireless system design
e Detection in unknown channels (molecular, mmW, nonlinear)
e Modulation and detection
e Encoding and decoding
e MIMO transmission and reception
e Joint source and channel encoding/decoding
e Network resource allocation

ML algorithm and training optimization needed
e That is where comm/network theory come in



“"ML in PHY layer design

Analog Channel N(f)
Message = Transmitter [—— H ( f ) —»| A/D |—»| Receiver | Message

x(1) »(2)

PHY transmitter and receiver design typically based
on a mathematical channel mode
« Accurate channel models may not be known

- Models may not enable computationally efficient PHY
algorithms (decoding, detection, message recovery)

How does an ML-based approach solve this?
- No need for an underlying model or all its parameters
- Learn the design directly from data
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BER for Poisson/Molecular
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mave Channel Mod

Channel Model*
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sample CIR

e Sparse time clustering

0.0015 A

Amplitude

* Long memory

0.0010 1
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Massive MIMO

e Compensates for severe pathloss
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e Enables aggressive spatial reuse
e Needs to handle highly directional links

Hard to estimate accurate CSI
Prohibitive complexity of ML detection

* Samimi et al. 3-D millimeter-wave statistical channel model for 5G wireless system design.



““Uplink Detection with SBRNN

Single cell mmw uplink (sparse) — .22 m ﬂ

The BS has multiple antennas 'if; | DD

. . \'ﬁ’ ', Y A
Each device has a single antenna s o P

e Can be extended to multi-antenna case

Use Sliding BRNN detector to detect the
received symbols at the BS without any

knowledge of CSI

pi Pi+1
Output
Layer
Stream of |
vee | vie Dwatvwoolvioal oo «oe GRU-B GRU-B |<—
observed signals Y| y21]¥3 Yw Pw+iyw+2yw+3 Layer 3

_________________________________________________________________________________ | GRU-F GRU-F
o Y vl v L 4 x
Sliding BRNN N 1 e N
detector | | | |
v vl v v Merg Merg

A A A
BRNN *2 |GRU—B |<-—| GRU-B|<—

(_
o
=
%(—

(_

5]
c
&
c
Lo o]




- Performance: SBRNN vs Viterbi

* SBRNN is close to the optimal Viterbi,
and outperforms Viterbi-cut

* SBRNN trained on a single SNR range
generalizes well to other SNRs.
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Carrier Frequency 28 GHz
Bandwidth 8oo MHz
Transmit Power 1ndBm
Tx-Rx Separation distance | 60 m
Tx-Rx Antenna Gains 24.5 dBi
Modulation Scheme BPSK
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Performance: SBRNN w/ CSI imperfection

—6 —4 -2 0 2
SNR [dB]

11]—1 -
1072 1
o |
:_" :|_.|],—:-I_E ! ! !

2 { === Viterbi: perfect CSI W
# 1os | —®— SBRNN: 5.0% CS! error |
{ —e— Viterbi: 5.0% C5I error .
| —=— SBRNN: 1.0% CSl error i
107 7 —m— Viterbi: 1.0% CSI error :

] i
4



* Training: # of samples needed for 90% detection accuracy
* Testing: run time of detecting one 200-bit message!

| == from scratch
{ mmm from pretrained model

0 1 Z

3 4 5 6 7
channel indices

Receive Antennas Sliding BRNN Viterbi
4 0.244 S 12.461 S
128 0.264 S 52.681S




Algorithm 1 Viterbi Algorithm

1
2
3

Boh

: Input: Block of channel outputs y*, where £ > L
. Initialization: Set k = 1, and fix @ (3) =0, V3 € 8.
: Compute

min
ucShul—1=5,

Cr (8) =

cIf k=1 set (8); ;. = (3°),, where
8° = argminé (3).
BcSt

:Set k:=k+1.If k<t go to Step 3.
Output: decoded output 5°, where &} , , = 3°.

(Ck—1 (1) +ck (8)).
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ML-based log likelihood
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ViterbiNet: learn just p(y| x)
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JOINT SOURCE CHANNEL CODING
USING DEEP LEARNING
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" Results

Top Plot:

« Sentences with similar meaning
are placed close together in the
code space

Bottom Plot:
» 400 bits per sentence,

e erasure rate of 0.05

* Reed-Solomon codes are used
when separate source and channel
code design is used (black, red,
and blue)

« Considerable number of word
errors for deep learning may be
word replacements that preserve
the meaning of the sentence

Word error rate
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mmWave Massive MIMO

Unlicensed 60GHz and Light Licensed E-Band

| | :
€ 10s of GHz of Spectrum=> Dozens of devices

60GHz 70/80GHz
| [ T |
60 70 80 90

* mmWaves have large attenuation and path loss

* Massive MIMO removes attenuation, fading, interference
® Bottlenecks: channel estimation, complexity, propagation
* |deal beamforming disappears with shadowing

* Need multihop/mesh networks

Hundreds
of antennas

50



Blind MIMO Decoding via Vertex Hopping

Given samples in the form:
y=Ax +t+e
A~N(0,D)**" e ~N (0,02 *",
x is drawn from an MPAM or BPSK
constellation (source must be hypercubic).

Rich scattering, small MIMO (2 < n < 12).

IMO Decoding
In a block-fading environment, estimate 4 and recover

x given only k samples of y
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Fitting a Parallelepiped --- Algorithms

———————————————

Gaussian noise will not

e | f greatly distort this shape
maximize log|detU]| (%)

U
subject to Uyilo <1+ci=1,..k

(%) is a non-convex optimization problem
Constrained gradient descent works but is slow.

The Vertex Hopping algorithm uses concepts from solving
mixed-integer linear programming to solve (*).
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Runtime Performance

_ Vertex Hopping* Gradient Descent

n k Pr[success] Time (s) Pr[success] Time (s)
8 1.0 1.83 x 107° 0.99 3.01 x 1072
6.46 X 107° 0.99 6.33 x 1072
296 x 107* 0.97 0.30
8.52 x 10~* 0.93 0.59
5.36 X 1072

:Implemented in Rust
MATLAB’s fmincon



AWGN and Fading Performance

aij~N(0,1) Rayleigh Fading
100 : 100 =—c=——1
10~1E | 168 L )
- @ - “~A .
v 1072 ¢ 1 x 107°¢ E
L E -] g -
T 10 = 1072 ¢ =
04 [ EESE Mo 10 e
m m m Gradent Descent * = m m m Gradent Descent
- e Vertex Hopping I “ I g == VVertex Hopping 3
1 10 20 30 0 5 10 15 28 25

SNR (dB) SNR (dB)



Network Optimization Challenges

» Algorithmic complexity
* Frequency allocation alone is NP hard

e Also have MIMQO, power control, hierarchical networks:
NP-really-hard

e Advanced optimization tools needed, including a
combination of centralized (cloud) distributed, and locally

centralized (fog) control | |

e ML can also play a role

Next challenge:
optimizing caching
and edge computing
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Fog-Optimization vs. Centralized

® Use clustering technique to cluster BSs, then optimize

power allocation to maximize uplink sum rate

e Consider multiple clustering techniques (not much difference)
e Nonconvex approximation for optimization

Single-User Decoding per BS
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s Joint Decoding in Virtual Cell
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‘Summary

Future wireless networks must support high rates,
extreme energy efficiency, and low latency

e Small cells, multihop routing and massive MIMO are key
enablers.

e Network must be robust to rapidly-varying channels and
adversaries

e Machine learning and optimization is a promising new tool to

use in receiver design, multiple access, and resource
allocation

Cloud and fog-based networking has many open
challenges, particularly edge vs. cloud optimization
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