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Future Wireless Networks
Require agility and robustness



Rethinking cellular and ad-hoc network design

Utilizing more spectrum (mmw)

Very low power radios

Massive MIMO (multiple antennas)

New PHY and MAC techniques

Multihop routing

 Edge computing and caching

 Fog optimization

Machine learning

Enabling Technologies for Future Wireless Networks

Hundreds
of antennas

Cloud Optimization

Fog 
Optimization

Small
Cell

Relay

Distributed 
Antennas

Base Station Cooperation 



ML in Wireless Systems
 We have shown that ML “trumps theory”:

 In equalization of unknown/complex channels
 In joint source and channel coding of text 

 Application of ML to wireless system design
 Detection in unknown channels (molecular, mmW, nonlinear)
 Modulation and detection 
 Encoding and decoding
 MIMO transmission and reception
 Joint source and channel encoding/decoding
 Network resource allocation

 ML algorithm and training optimization needed
 That is where comm/network theory come in



ML in PHY layer design

• PHY transmitter and receiver design typically based 
on a mathematical channel mode
• Accurate channel models may not be known
• Models may not enable computationally efficient PHY 

algorithms (decoding, detection, message recovery)

• How does an ML-based approach solve this?
• No need for an underlying model or all its parameters
• Learn the design directly from data
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BER for Poisson/Molecular 
Channels

 SBRNN outperforms VD with perfect 
CSI if 𝑀𝑀 is less than the memory order

 SBRNN outperforms VD with CSI 
estimation error

 Lower 𝑀𝑀 and 𝐿𝐿 correspond to lower 
complexity in the detection algorit



mmWave Channel Model
 Channel Model*
 Sparse time clustering
 Long memory

 Massive MIMO
 Compensates for severe pathloss
 Enables aggressive spatial reuse
 Needs to handle highly directional links

 Hard to estimate accurate CSI
 Prohibitive complexity of ML detection

* Samimi et al. 3-D millimeter-wave statistical channel model for 5G wireless system design. 



Uplink Detection with SBRNN
 Single cell mmw uplink (sparse)
 The BS has multiple antennas
 Each device has a single antenna

 Can be extended to multi-antenna case
 Use Sliding BRNN detector to detect the

received symbols at the BS without any
knowledge of CSI



Performance: SBRNN vs Viterbi
Parameter Value

Carrier Frequency 28 GHz

Bandwidth 800 MHz

Transmit Power 11 dBm

Tx-Rx Separation distance 60 m

Tx-Rx Antenna Gains 24.5 dBi

Modulation Scheme BPSK

 SBRNN is close to the optimal Viterbi,
and outperforms Viterbi-cut

 SBRNN trained on a single SNR range
generalizes well to other SNRs.

4 RX Antennas 128 RX Antennas



Performance: SBRNN w/ CSI imperfection



Training Overhead and Run Time Efficiency

 Training: # of samples needed for 90% detection accuracy
 Testing: run time of detecting one 200-bit message1

Receive Antennas Sliding BRNN Viterbi

4 0.244 s 12.461 s
128 0.264 s 52.681 s



ViterbiNet: learn just p(y|x)





Results
Top Plot:
• Sentences with similar meaning 

are placed close together in the 
code space

Bottom Plot:
• 400 bits per sentence,

• erasure rate of 0.05

• Reed-Solomon codes are used 
when separate source and channel 
code design is used (black, red, 
and blue)

• Considerable number of word 
errors for deep learning may be 
word replacements that preserve 
the meaning of the sentence



mmWave Massive MIMO

 mmWaves have large attenuation and path loss
 Massive MIMO removes attenuation, fading, interference
 Bottlenecks: channel estimation, complexity, propagation
 Ideal beamforming disappears with shadowing
 Need multihop/mesh networks

Hundreds
of antennas

Dozens of devices10s of GHz of Spectrum



Blind MIMO Decoding via Vertex Hopping
Given samples in the form:

𝒚𝒚 = 𝑨𝑨𝑨𝑨 + 𝒆𝒆
𝑨𝑨~𝒩𝒩(0,1)𝑛𝑛 × 𝑛𝑛, 𝒆𝒆 ~𝒩𝒩(0,𝜎𝜎2)𝑛𝑛 × 𝑛𝑛.
𝑥𝑥 is drawn from an MPAM or BPSK 

constellation (source must be hypercubic).
Rich scattering, small MIMO (2 ≤ 𝑛𝑛 ≤ 12).

In a block-fading environment, estimate 𝑨𝑨 and recover 
𝒙𝒙 given only 𝑘𝑘 samples of 𝒚𝒚

Blind MIMO Decoding



Fitting a Parallelepiped --- Algorithms

 (∗) is a non-convex optimization problem
 Constrained gradient descent works but is slow.
 The Vertex Hopping algorithm uses concepts from solving 

mixed-integer linear programming to solve (∗).

log |det𝑼𝑼|

𝑼𝑼 𝒚𝒚𝑖𝑖 ∞ ≤ 1 + 𝑐𝑐, 𝑖𝑖 = 1,… ,𝑘𝑘

maximize

subject to

𝑼𝑼
(∗)

Gaussian noise will not 
greatly distort this shape



Runtime Performance
Vertex Hopping* Gradient Descent

n k Pr[success] Time (s) Pr[success] Time (s)
2 8 1.0 1.83 × 10−5 0.99 3.01 × 10−2

3 13 1.0 6.46 × 10−5 0.99 6.33 × 10−2

4 18 1.0 1.74 × 10−4 0.99 0.13
5 18 1.0 2.96 × 10−4 0.97 0.30
6 22 1.0 8.52 × 10−4 0.93 0.59
8 30 0.99 4.99 × 10−3 0.80 3.5
10 45 0.99 5.36 × 10−2 0 -
12 60 0.99 3.70 × 10−1 0 -

†

*
†Implemented in Rust
MATLAB’s fmincon



AWGN and Fading Performance



Network Optimization Challenges
Algorithmic complexity

 Frequency allocation alone is NP hard
 Also have MIMO, power control, hierarchical networks: 
NP-really-hard

 Advanced optimization tools needed, including a 
combination of centralized (cloud) distributed, and locally 
centralized (fog) control

 ML can also play a role

Macrocell BS

Small cell BS

Cloud Optimization

Fog 
Optimization

Next challenge: 
optimizing caching 
and edge computing



Fog-Optimization vs. Centralized
 Use clustering technique to cluster BSs, then optimize 

power allocation to maximize uplink sum rate
 Consider multiple clustering techniques (not much difference)
 Nonconvex approximation for optimization

10x loss

Single-User Decoding per BS Joint Decoding in Virtual Cell

55% loss



Summary
 Future wireless networks must support high rates, 

extreme energy efficiency, and low latency
 Small cells, multihop routing and massive MIMO are key 

enablers. 
 Network must be robust to rapidly-varying channels and 

adversaries
 Machine learning and optimization is a promising new tool to 

use in receiver design, multiple access, and resource 
allocation

 Cloud and fog-based networking has many open 
challenges, particularly edge vs. cloud optimization
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