

An Introduction to Spatial Autoregressive Modeling

Data Expeditions

January 18th, 2020

Jonathan Holt

Reza Momenifar

Outline

Introduction

Spatial autocorrelation

Case Study

Lab activity

Introduction

Task: Predict student test scores using a linear regression model

Task: Predict student test scores using a linear regression model

You are responsible for developing a linear regression model that predicts student test scores.

<u>Activity</u>: For 3 minutes, discuss with your neighbor the the most important predictor variables for your model.

Now, let's look at the actual data

Imagine a classroom at UNC...

.....

100000000

Students just received their final exams.

Front of classroom

Now, can you think of a better model to predict student test scores?

 <u>Activity</u>: For 3 minutes, discuss with your neighbor any changes that you would make to your original model.

How about:

score ~ $\beta_0 + (\beta_1 * IQ) + (\beta_2 * hours studied) + (\beta_3 *$ *score* $of neigbor) + \varepsilon$

Notice that the response variable (score) is on **both** sides of the equation.

Task: Predict height of children using a linear regression model

Task: Predict height of children using a linear regression model

You are responsible for developing a regression model that predicts the height of a child.

<u>Question</u>: Name 3 predictors that you should include in your model.

How about:

 $height \sim \beta_0 + (\beta_1 * age) + (\beta_2 * gender) + (\beta_3 * height of child last year) + \varepsilon$

Notice that the response variable (height) is on **both** sides of the equation.

"Autoregressive"

What do these two models have in common?

score ~ $\beta_0 + (\beta_1 * IQ) + (\beta_2 * hours studied) + (\beta_3 *$ *score* $of neighbor) + \varepsilon$

height ~ $\beta_0 + (\beta_1 * age) + (\beta_2 * gender) + (\beta_3 * height of child last year) + \varepsilon$

"Autoregressive"

Spatial Autocorrelation

"The first law of geography: Everything is related to everything else, but near things are more related than distant things." Waldo R. Tobler (Tobler 1970)

If features were randomly distributed ...

> ... population density map of the US would look like this

... elevation map of the US would look like this

Spatial autoregressive modeling

 Spatial autoregressive models are models that account for spatial autocorrelation among observations (i.e., the response variable is not randomly distributed in space).

Examples of data with spatial autocorrelation

Political elections

Contaminant transfer

Disease spread

Housing market

Weather

Recall the similarities between spatial and temporal correlation

• How would you model the height of a growing child?

height ~ $\beta_0 + (\beta_1 * age) + (\beta_2 * sex) + (\beta_3 * height previous year) + \varepsilon$

Similar to

score ~ $\beta_0 + (\beta_1 * IQ) + (\beta_2 * hours studied) + (\beta_3 *$ *score* $of neighbor) + \varepsilon$

In fact, many types of data are **spatially** *and* **temporally** autocorrelated

- Political elections
- Contaminant transfer
- Disease spread
- Housing market
- Weather

Rain in Durham at $2pm \sim \beta_0 + (\beta_1 * rain at 1pm) + (\beta_2 * rain in Hillsborough) + \cdots$

How do I know if my data are spatially autocorrelated?

• *Moran's I* test measures the spatial autocorrelation for continuous data

•
$$I = \frac{N}{W} \frac{\sum_i \sum_j w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_i (x_i - \bar{x})^2}$$

- N is the number of spatial units indexed by i and j
- *x* is the variable of interest; \bar{x} is the mean of *x*
- w is a matrix of spatial weights
- W is the sum of all w_{ij}

Practice with the classroom test-score data

For simplicity, consider these 9 students

Spatial weights matrix w

	Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
Henry									
Xu									
Lisa									
Tang									
Bella									
Kim									
Reza									
Max									
Zion									

Spatial weights matrix w

	Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
Henry	0	1	0	1	1	0	0	0	0
Xu	1	0	1	1	1	1	0	0	0
Lisa	0	1	0	0	1	1	0	0	0
Tang	1	1	0	0	1	0	1	1	0
Bella	1	1	1	1	0	1	1	1	1
Kim	0	1	1	0	1	0	0	1	1
Reza	0	0	0	1	1	0	0	1	0
Max	0	0	0	1	1	1	1	0	1
Zion	0	0	0	0	1	1	0	1	0

Putting it all together

i

I —	N	$\underline{\sum_i \sum_j w_{ij}(x_i - \bar{x})(x_j - \bar{x})}$
1 —	W	$\sum_{i} (x_i - \bar{x})^2$

F(I)			-1	
	_	\overline{N}	_	1

		Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
j	Henry	0	1	0	1	1	0	0	0	0
	Xu	1	0	1	1	1	1	0	0	0
	Lisa	0	1	0	0	1	1	0	0	0
	Tang	1	1	0	0	1	0	1	1	0
	Bella	1	1	1	1	0	1	1	1	1
	Kim	0	1	1	0	1	0	0	1	1
	Reza	0	0	0	1	1	0	0	1	0
	Max	0	0	0	1	1	1	1	0	1
	Zion	0	0	0	0	1	1	0	1	0

Interpreting Moran's I

- In general,
 - ~ 1 means high positive autocorrelation
 - ~ -1 means high negative autocorrelation
 - ~ 0 means no autocorrelation
- We can do a hypothesis test to be sure... but we'll use software for that.
 - Null hypothesis: I is (approximately) zero
 - Alternative hypothesis: I is greater or less than zero

Putting it all together

i

		Henry	Xu	Lisa	Tang	Bella	Kim	Reza	Max	Zion
j	Henry	0	1	0	1	1	0	0	0	0
	Xu	1	0	1	1	1	1	0	0	0
	Lisa	0	1	0	0	1	1	0	0	0
	Tang	1	1	0	0	1	0	1	1	0
	Bella	1	1	1	1	0	1	1	1	1
	Kim	0	1	1	0	1	0	0	1	1
	Reza	0	0	0	1	1	0	0	1	0
	Max	0	0	0	1	1	1	1	0	1
	Zion	0	0	0	0	1	1	0	1	0

$$I = \frac{N}{W} \frac{\sum_{i} \sum_{j} w_{ij} (x_i - \bar{x}) (x_j - \bar{x})}{\sum_{i} (x_i - \bar{x})^2}$$

I = 0.12 E(I) = -0.125 Alternative hypothesis = True P-value = 0.03

Conclusion

- Our data is spatially autocorrelated.
- We still don't know what to do about it...

Case Study: economic impact of green spaces in Zillow neighborhoods

Dataset

Zillow median neighborhood home price

Socio-demographics and home characteristics from the American Community Survey Median household income Number of rooms Etc.

Environmental attributes

Land surface temperature Tree cover Ftc. The full study includes many variables

Variable definition, Unit	Min	Max	Mean	Std. dev.
ZHVI; median price per ft ² (dollars)	12.1	1957.9	232.8	217.9
structural variables				
median number of rooms	2.1	9.0	6.3	1.0
median age of home (yrs)	5.0	78.0	50.1	19.0
demographic variables				
median age of residents (yrs)	16.3	77.1	38.7	7.1
population density (people/m ²)	0.0002	0.01	0.001	0.001
proportion of white residents (%)	0	1.0	0.7	0.2
proportion obtained bachelor's degree (%)	0	0.62	0.24	0.11
proportion obtained master's degree (%)	0	0.49	0.11	0.07
median household income (dollars)	10,940	250,000	73,000	34,500
community features				
categorical: majority road type	secondary road = 4149, tertiary road = 2110			
slope (degrees)	1.2	18.2	3.6	1.9
proportion impervious surfaces (%)	0	0.94	0.42	0.16
binary: 1 = college or university present			0.17	
binary: 1 = k-12 school present			0.78	
binary: 1 = highway present			0.51	
categorical: mode aspect	NE = 4690, NW = 265, SW = 1292			
categorical: mode development intensity	medium = 2346, high = 412, low = 3501			
categorical: U.S. state				
environmental attributes				
binary: 1 = golf course present			0.06	
binary: 1 = cemetery present			0.20	
binary: 1 = park present			0.74	
proportion park area (%)	0	0.55	0.03	0.05
binary: 1 = lake/pond present			0.22	
binary: 1 = stream/river present			0.10	
binary: 1 = swamp/marsh present			0.03	
land surface temperature, Celsius	0.20	44.7	27.4	6.7
tree canopy cover (%)	0	0.58	0.12	0.09
NDVI (-1 – 1)	0	0.47	0.25	0.08
proportion open space (%)	0	0.50	0.15	0.12

Model the median neighborhood home price as a function of socio-demographics, home characteristics, and environmental attributes.

This is called a hedonic pricing analysis.

The least squares model looks like this:

 $price \sim \beta_0 + (\beta_1 * income) + (\beta_2 * home \ age) + \dots + (\beta_3 * tree \ cover) + \varepsilon$

This is what we are interested in

Zillow neighborhoods are spatially distributed, so we need to consider spatial autocorrelation.

What does Mr. Moran say?

"Reject the null hypothesis!"

Original model

$$P_i = \beta_0 + \beta_1 S_i + \beta_2 D_i + \beta_3 A_i + \beta_4 E_i + \varepsilon_i$$

Spatial lag model

$$P_i = \beta_0 + \lambda W P_i + \beta_1 S_i + \beta_2 D_i + \beta_3 A_i + \beta_4 E_i + \varepsilon_i$$

W

	Walltown	Trinity Heights	Forest Hills
Walltown	0	1	0
Trinity Heights	1	0	0
Forest Hills	0	0	0

Structural Community features features demographics Environmental attributes

> Question: 3 minutes Link: <u>https://bit.ly/38AAVnj</u>

<u>Spatial error</u> model

W

1

0

0

Trinity Heights

0

0

0

Walltow

n

0

1

0

Walltow

Trinity

Forest

Hills

Heights

n

Spatial lag AND error model

$$P_i = \beta_0 + \lambda W P_i + \beta_1 S_i + \beta_2 D_i + \beta_3 A_i + \beta_4 E_i + \rho W \mu_i + \varepsilon_i$$

W

	Walltown	Trinity Heights	Forest Hills
Walltown	0	1	0
Trinity Heights	1	0	0
Forest Hills	0	0	0

Structural Community features features demographics Environmental attributes

Model estimates

Interaction term! -----

Variable	coeff.
spatial lag for price	0.03***
spatial error	0.72***
intercept	0.45**
environmental attribute variables	
park = 1	0.05***
park = 1 * park area	0.005**
stream/river = 1	-0.02**
In(land surface temperature)	0.23***
(In(land surface temperature))^2	-0.04***
In(percent tree canopy cover)	0.05***
ln(NDVI)	-0.17***
In(open space)	-0.007***
R ²	0.90
log-likelihood	275
AIC	-392

Recall interactions from Monday's lecture

Model results: Interactions between environmental attributes

	interaction co	main effects coefficients	
	Tree canopy cover	open space	
temperature	0.18***	-0.06***	0.24***
tree canopy		-0.002	-0.56***
cover			
open space			0.17***
r ²			0.90
log-likelihood			306
AIC			-448

Question: 4 minutes. <u>https://bit.ly/2Hy7VRd</u>

Model results: Interactions between median household income (MHHI) and environmental attributes

	interaction with MHHI	non-interaction coefficients
temperature	-0.15***	1.78***
tree canopy cover	0.04***	-0.39***
NDVI	0.03	-0.46
open space	0.01	-0.07
r ²		0.90
log-likelihood		310
AIC		-455

Question: 4 minutes. <u>https://bit.ly/3250f0d</u>

Lab activity (preview)

