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ABSTRACT

We introduce an algorithm that removes the deleterious effect
of cradling on X-ray images of paintings on wooden panels.
The algorithm consists of a three stage procedure. Firstly,
the cradled regions are located automatically. The second
step consists of separating the X-ray image into a textural
and image component. In the last step the algorithm learns
to distinguish between the texture caused by the wooden cra-
dle and the texture belonging to the original painted wooden
panel. The results obtained with our method are compared
with those obtained manually by best current practice.

Index Terms— texture, art, painting, cradle.

1. INTRODUCTION

1.1. The digital cradle removal problem

Between the 12th to the 17th century, paintings in Europe
were mostly created on wooden panels consisting of solid
wooden boards. Until about 1950, cradling was a common
restoration technique used by conservators to remediate or
prevent structural or insect damage. In the process, the pan-
els were first thinned, and then strengthened by (permanently)
attaching to their backs hardwood lattices called cradles.

On the other hand, modern-day museum conservators and
art historians rely heavily on X-ray imaging to study artist
technique, painting fabrication, and the physical condition of
the painting (e.g. cracks in the painted surface or wooden sup-
port). X-ray images of cradled works contain highly visible
horizontal and vertical “bars”, caused by the higher X-ray ab-
sorption in the thicker wood layer due to the cradle (see Fig.
1). This obstructs the “reading” of the X-ray image by art ex-
perts, who would welcome a (semi-)automated procedure to
remove these artifacts from the X-ray images.

In recent years, image processing algorithms have been
developed to analyze high-resolution digital images of art
paintings, e.g. to classify styles [1] , to detect (and inpaint)
cracks [2], or to remove canvas artifacts [3]. In [2] cradling
artifacts in X-ray images constituted a hindrance, but since
only a small portion of the painting needed to be processed,
the corresponding artifacts were easy to isolate, and were then
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Fig. 1: Cradle of old paintings on wood
panel: Top left: a sample patch from the X-
ray image of a cradled painting panel, illustrat-
ing the artifacts caused by the cradling, with en-
larged detail (showing cradle wood grain). Top
right: sketch of the lattice of crossed perpendicu-
lar wooden slats: slats parallel to the panel wood
grain are glued first; transverse slats are slotted
in. Left: indication, on the sample patch, of the
partition into different domains used in §2.

successfully removed by a morphological component analy-
sis (MCA) [4] pre-processing step. To our knowledge, there
is no algorithm yet to remove cradle artifacts from extended
portions of the X-ray images of panel paintings; experienced
conservators still do this manually, in Adobe PhotoshopTM – a
time-consuming process, applied to only a limited number of
paintings among the large museum collections.1

1.2. Our Approach

We formulate the digital cradle removal as a source separa-
tion problem. According to the physical composition of the
wooden panel and the cradle, a raw X-ray image I can be
viewed as the superposition of a panel image Ip, containing
all the information from the painting on the panel and the
wooden panel itself, and a cradle image Ic induced by the
cradling alone. We decompose Ic into two parts: I0

c , piece-
wise constant on the cradle support, corresponding to the cra-
dle thickness2, and Iwgc , a texture component reflecting the

1Alternative X-ray techniques involve filling of the voids in the cradle lat-
tice by pressing putty into them, in an attempt to even out the X-ray exposure,
resulting in additional risk to the paintings.

2This assumes that the cradle has sharp boundaries; for less sharp bound-
aries, e.g. when the cradling supports have rounded corners, I0

c is not con-



cradle’s wood grain. The panel image can also be decom-
posed, into a “cartoon” part Icartp (i.e. the different “color”
planes and their boundaries), and a texture part Itextp (i.e.
brushstroke details as well as the wood grain of the panel).
Accordingly, the decomposition of the whole image into “tex-
ture” and “cartoon” parts is I = (Icartp +I0

c )+(Itextp +Iwgc ).
We use a three-stage approach to extract I0

c and Iwgc from I.
We first estimate the locations of the cradles; to detect the

cradle slat angles (close to but not exactly 0◦ or 90◦), we use
the Radon transform (§2.1). We also estimate the intensity
difference between each single cradled region and the sur-
rounding panel-only region; crossing areas (where horizontal
and vertical slats overlap) need to be treated separately, be-
cause they correspond to a different intensity change. We use
these estimates to define the function I0

c , constant on the in-
terior of each single or crossing cradled region (with sharp or
simply modeled smoothed edges), and subtract it from I. We
define this intermediate result as Iintrm := I − I0

c .
The second stage uses MCA,inspired by the digital can-

vas removal [5], to separate Iintrm into Itext and Icartp . To
decompose F = A + B into its constituents, MCA uses that
A and B each have sparse decompositions into different stan-
dard dictionaries, DA and DB . In our case, the textures in
Iwgc and Itextp have sparse representations in a dictionary of
high frequency curvelets or shearlets; for the complimentary
Icartp , we use complex dual-tree wavelets, the same dictio-
nary as in [5] for the image “content”.

However, our problem is more complex than in [5], be-
cause Ip, which we want to recover, has components in both
constituents; the third stage in the algorithm deals with this
complication. Let Dp and Dc be the panel-only and the cra-
dled domains (see Fig.1;Dc = Dintc ∪Dbdc ). Then Itext|Dp

=
Itextp |Dp

, since Iwgc = 0 on Dp. On Dc, we have Itext|Dc
=

Iwgc |Dc
+ Itextp |Dc

. We shall use a variation of a sparse
Bayesian factor model (see §2.2) to obtain Iwgc : we learn dic-
tionaries for the panel and cradle textures in the feature (high-
frequency curvelet or shearlet) space, using our observation
of the different behavior of Itext on Dp and Dc; Iwgc is then
approximated by MCMC sampling. In this particularly chal-
lenging unsupervised setting, the Bayesian approach avoids
tuning parameters and the need for cross-validation.

2. CRADLE REMOVAL ALGORITHM

2.1. Radon transform and location estimation

Suppose, for instance, that the X-ray image I on D ⊂ R2

contains one horizontal cradle slat.3 To even out fine scale
noise and texture effects, we first apply an elongated verti-
cal Haar transform, δIi,j =

∑L−1
l=0 Ii−l,j −

∑L
l=1 Ii+l,j , (L

stant. However, it can then be modeled or approximated, as shown below.
3This assumption can be made without loss of generality: since cradle

slats in the same direction are well separated, it is easy to consider patches
that have at most one cradle slat in each direction. For a vertical slat, we just
perform the same procedure after rotating the patch by 90◦.

fixed), followed by a Radon transformR:

R|δI|(α, s) =

∫ ∞
−∞
|δI((s cosα, s sinα) + tτα)|dt (1)

where τα = (− sinα, cosα), with α ∈ [−θ, θ]. (See Fig. 2.)

Fig. 2: Radon transform to locate the cradle: I here is the
left part of Fig. 1. Left: peaks in R|δI|(α∗, s), for the optimal angle
α∗, indicate the boundaries of the cradle. Right: a constant-angle
section of the Radon transform of |δI| attains maximal `2 energy
for α = α∗.

For any α, ‖ R|δI|(α, ·) ‖`1(R)=
∫
R2 |δI(x, y)|dxdy

=‖ δI ‖`1(R2). On the other hand, for the optimal α∗,
R|δI|(α∗, s) is more concentrated in s than for other α.
Thus the optimal α∗ can be found by maximizing the `2(R)-
norm ofR|δI|(α, ·); we set the angle of the horizontal cradle
slat as

α∗ = arg max
α∈[−θ,θ]

‖ R|δI|(α, ·) ‖`2(R) .

To estimate sharp boundaries we back-project the hard-thres-
holded Radon data Hλ(R|δI|(α∗, s)) to the image domain.
In the case of smooth boundaries, the profiles are modeled by
smooth shape (rather than step) functions {Φa}a∈A, with a
uniform parameter choice (estimated from R|δI|(α∗, ·)) for
each transition region. The intensity difference across the cra-
dle boundaries is also estimated fromR|δI|(α∗, ·).

2.2. Additive factor model

The second stage is a fairly standard application of MCA (see
[4]) to separate out Itext from Iintrm = I − I0

c . The in-
put to the third stage, explained here, consists of Itext and
the partition of the image domain D = Dp ∪ Dc obtained
in the first stage. Let S be the linear curvelet (or shearlet)
transform that encodes Itext into a low dimensional feature
vector of curvelet (or shearlet) coefficients at every pixel in



D. Since the wood grain texture of the cradle is highly direc-
tional, we can further reduce the dimensionality by consider-
ing only curvelets or shearlets within a (small) angle range
Θ = [−θ, θ], such that Itextc = S∗ΘSΘItextc . (S∗Θ is the
adjoint operator of SΘ.) Set Yp = SΘItext|Dp

∈ RK×N ,
Yc = SΘItext|Dc ∈ RK×M , and Y = [Yp, Yc] = [yi], i =
1, ...,M +N , where N and M are the numbers of panel-only
and cradled pixels (samples), and K is the dimension of the
feature space associated to SΘ.

On Dc, Itext consists of two parts; accordingly we have
Yc = SΘ(Iwgc + Itextp |Dc

) = Y ∗c + Y ∗∗c ; it then follows that
Iwgc = S∗ΘY ∗c . Our task is thus to separate Yc into the sum
Y ∗c + Y ∗∗c , where Y ∗∗c is “similar to” Yp (since both corre-
spond to the texture content of the panel painting, albeit in
different regions of the panel).

We build an additive factor model, with dictionaries (fac-
tor loading matrices) for [Y ∗∗c , Yp] and Y ∗c introduced sepa-
rately. For the panel-only samples Yp = [yi], i = 1, ..., N , we
use the formulation of a sparse Bayesian factor model in [6],

yi = Ληi + εi, (2)

where Λ ∈ Rp×k is the factor loadings matrix, ηi is the ith
latent factor and εi is a residual. The columns λh of Λ can be
viewed as dictionary elements. In our case, each dictionary
element is a specific combination of shearlets or curvelets of
different frequencies and directions. Performance can be im-
proved by incorporating increasing sparsity in the dictionary
with respect to the index h; an appropriate size k of dictio-
nary is adaptively learned as well as the sparse level. Instead
of setting elements of Λ exactly to zero, we put a continuous
shrinkage prior, which approximates the exact sparsity setting
but has substantial computational improvement.

For cradled samples Yc = [yj ], j = N + 1, ..., N + M ,
we have the decomposition Yc = Y ∗c + Y ∗∗c . Moreover,
Y ∗∗c and Yp are both generated from the panel-only sources
Itextp |Dc

and Itextp |Dp
, although Itextp |Dc

may be attenu-
ated somewhat because of the strong signal of the cra-
dle. Therefore, assuming that Yp/ρ = [yi/ρ]i=1,..,N and
Y ∗∗c = [y∗∗j ]j=N+1,...N+M obey the same distribution, where
ρ is a constant attenuation factor in (0, 1], we construct the
following additive factor model,

yj = ρΛηj + Γξj + εj ; (3)

here Λ is the same factor loading matrix as in (2) such that
y∗∗j ≈ ρΛηj . Γ and ξj are the factor loading matrix and the
factor for y∗j . The residual εj in (3) has the same distribution
as εi in (2). We also put the same priors on Γ, ηj in (3) as
those on Λ, ξi in (2), but allow different sparsity in Γ and Λ.

To learn (2) + (3) simultaneously, a block Gibbs sampler
cycles through the conditionally conjugate posteriors of the
parameters; This Gibbs sampler is analogous to the one in
[6], where the explicit expressions of conjugate posteriors and
further discussion about the construction can be found. How-
ever, to achieve the best result, we cut the feedback of cradle

data Yc in updating λi, so that we implement the conditional
posterior of λi as π(λi|Yp,Ωc), where Ωc stands for all the
other parameters in the model; by using panel-only data, the
chance of picking up cradled elements as λi’s is negligible.

Let Γ(n), ξ
(n)
j , and ε(n)

j , j = N + 1, . . . , N + M, n =
1, . . . , N0 be the posterior draws of Γ, ξj , and εj from the
above Gibbs sampler. We get the approximation ŷ∗j =

1
N0

∑N0

n=1

(
Γ(n)ξ

(n)
j + ε

(n)
j

)
, and Îtextc = S∗ΘŶ ∗c .

2.3. The Algorithm

Algorithm 1 Digital Cradle Removal Algorithm

1: Input: I
2: Estimate horizontal cradle location Dhorc

3: Estimate boundary supportDhor,bdc , profile Bh and inten-
sity difference δh

4: Compute Dhor,intc = Dhorc \ Dhor,bdc and I0
c |Dhor

c
=

1Dhor,int
c

δh + Bh
5: Rotate I clock-wise 90◦

6: Repeat step 2 - 3, output Dverc , δv
7: Rotate Dverc counter clock-wise 90◦

8: Estimate cross-section region D×c = Dhorc ∩ Dverc

9: Estimate δ×, compute I0
c |D×

c
= 1D×

c
δ×

10: Compute I0
c |Dver

c
= (1Dver

c
− 1D×

c
)δv + Bv

11: Dc = Dhorc ∪ Dverc , Dp = D \ Dc
12: Compute I0

c = I0
c |Dhor

c
+ I0

c |Dver
c

+ I0
c |D×

c

13: Do MCA on I − I0
c , output Itext, Icartp

14: Compute angle restricted shearlet/curvelet transform,
Yc = SΘItext|Dc

, Yp = SΘItext|Dp

15: Run MCMC over the additive factor model (2) + (3), out-
put ŷ∗j = Γestξestj + εestj

16: Compute Îtextc = S∗ΘŶ ∗c , Ic = I0
c + Itextc

17: Compute Ip = I − Ic
18: Output: Ip, Ic, I0

c , Itextc

The steps listed in Algorithm 1 estimate the cradle im-
age Ic and remove it from I as explained above. Steps 2 -
11 are the first stage of constant intensity difference I0

c ap-
proximation (possibly with smooth transition); steps 2 - 3 use
the Radon transform technique described in §2.1. Usually,
I0
c is not simply piecewise constant: it is constant on a large

portion Dintc of its support Dc, but on the boundary regions
Dbdc = Dc \ Dintc , consisting of narrow strips, it makes a
smooth transition to 0, with a fairly uniform profile along ev-
ery cradle edge segment. Step 13 carries out the second stage
(MCA), and steps 14 - 16 cover the third stage of cradle wood
grain texture separation and approximation.

3. IMPLEMENTATION AND EXPERIMENTS

We implement the first stage of our algorithm in MATLAB
2013b, using the Matlab function radon for the Radon trans-



Fig. 3: Comparing
cradle removal
results for the patch
(and detail) shown in
Fig. 1: Left pair: This
paper’s algorithm;
Right pair: Manual
processing by Noelle
Ocon, using Adobe
PhotoshopTM .

form, allowing an angle deviation of 5◦ from the horizontal or
vertical direction. For the shape functions Φa in the smooth
boundary approximation, we used scaled Gauss error func-
tions a1Erf(a2 ·). For the MCA part, we use the MATLAB
toolbox MCALab110 from [7]. For the transforms involved in
MCA and the feature extraction of the texture image (curvelet,
dual-tree complex wavelet and shearlet transforms), we use
CurveLab-2.1.3 from [8], the Dual-Tree Complex Wavelet
Transform (Pack-version 2.1) introduced in [9] and the Fast
Finite Shearlet Transform (FFST) toolbox from [10]. To ob-
tain pixel-wise feature vectors via the curvelet transform, co-
efficients of low frequency curvelets are upsampled by inter-
polation4 to the same resolution as the high frequency ones.
To implement the Gibbs sampler of the additive factor model,
we modified the code of [6], adopting the same values for the
hyper-parameters of the priors. The attenuation factor ρ is set
to 0.8 according to visual judgment, based on results with dif-
ferent ρ values. The Gibbs sampler is run for 1800 iterations
with a burn-in of 1000 cycles; these numbers are chosen such
that a stationary state is reached after burn-in and the result is
visually the same if more iterations are executed.

We applied our method to the X-ray image of one panel
in the Ghissi Altarpiece by Francescussio Ghissi, a 14th cen-
tury Italian painter, from the North Carolina Museum of Art
(NCMA) collection. The image size is 7288-by-4376 pixels;
the first stage algorithm is run on sub-images containing each
one specific cradled region. After subtracting the constant (or
smoothly modeled) part of the cradled image, the image is di-
vided into overlapped sub-patches of size 512-by-512, and the
second and the third stage algorithm is run on each sub-patch.
The input cradled and panel-only feature vectors of the addi-
tive factor model are randomly sampled in the feature vectors
belonging to the target sub-patch or to its immediate neigh-
bors, so that the models learned are locally consistent. Those
feature vectors not used as samples of the model are decom-
posed into “panel-only” and “cradled” vectors by posterior
inference. The panel-only components of these sub-patches

4This is not necessary if FFST is used instead, where the low frequency
coefficients are not downsampled in the forward transform.

are reconstructed in image space and merged to obtain the fi-
nal result.

Fig. 3 shows the result of our algorithm on the patch il-
lustrated in Figures 1 and 2; it compares favorably with the
result obtained “manually” by one of us (N.O.), the conserva-
tor at NCMA in charge of removing X-ray image artifacts of
this type, up to the standards required for art history publica-
tion. High-resolution versions for a much larger segment are
at URL https://www.math.duke.edu/˜rachel/
research/CradleRemoval/CradleRemoval.html

4. CONCLUSION

In this paper we propose a systematic digital cradle removal
method for X-rays of paintings on wooden panel. The con-
stant intensity, due to the thickness of the cradling, and the
wood grain texture of the cradle are estimated and subtracted.
Our method is the first to incorporate a probability model for
the extraction of the wood grain coming only from the cra-
dle without removing the wood grain of the panel itself. Our
results compare favorably with the best existing practice.

This digital method has the potential to make X-ray im-
ages better-read and reveal hidden information not easily
seen. We continue to investigate possible improvements and
extensions to our current algorithm. Comparison with exist-
ing (manual) practice is only a substitute for ground truth.
For some paintings, cradling-induced tensions have caused
structural damage; museums are starting to physically re-
move these cradles. Applying our algorithm to the X-ray of
such a cradled panel and comparing with an X-ray after “de-
cradling” will make comparison possible with a “real” ground
truth, when such datasets become available. It will also help
us verify the assumption that the texture of the wooden panel
is attenuated in areas that are superposed with the cradle.

5. REFERENCES

[1] C Richard Johnson, Ella Hendriks, Igor J Berezh-
noy, Eugene Brevdo, Shannon M Hughes, Ingrid



Daubechies, Jia Li, Eric Postma, and James Z Wang,
“Image processing for artist identification,” Signal Pro-
cessing Magazine, IEEE, vol. 25, no. 4, pp. 37–48, 2008.

[2] Bruno Cornelis, Yun Yang, Joshua T Vogelstein,
Ann Dooms, Ingrid Daubechies, and David Dun-
son, “Bayesian crack detection in ultra high resolu-
tion multimodal images of paintings,” arXiv preprint
arXiv:1304.5894, 2013.

[3] Bruno Cornelis, Ann Dooms, Jan Cornelis, and Peter
Schelkens, “Digital canvas removal in paintings,” Signal
Processing, vol. 92, no. 4, pp. 1166–1171, 2012.

[4] Michael Elad, J-L Starck, Philippe Querre, and David L
Donoho, “Simultaneous cartoon and texture image
inpainting using morphological component analysis
(mca),” Applied and Computational Harmonic Analy-
sis, vol. 19, no. 3, pp. 340–358, 2005.

[5] Bruno Cornelis and Alex Goodfriend, “Removal of
canvas patterns in digital acquisitions of paintings: A
source separation problem,” .

[6] Anirban Bhattacharya and David B Dunson, “Sparse
bayesian infinite factor models,” Biometrika, vol. 98,
no. 2, pp. 291–306, 2011.

[7] “MCALAB,” https://fadili.users.greyc.
fr/demos/WaveRestore/downloads/
mcalab/Home.html.

[8] “curvelet.org,” http://www.curvelet.org/.

[9] Nick G Kingsbury, “The dual-tree complex wavelet
transform: a new technique for shift invariance and di-
rectional filters,” in Proc. 8th IEEE DSP Workshop.
Citeseer, 1998, vol. 8, p. 86.
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