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Abstract
1.	 A central goal of animal ecology is to observe species in the natural world. The 
cost and challenge of data collection often limit the breadth and scope of eco-
logical study. Ecologists often use image capture to bolster data collection in 
time and space. However, the ability to process these images remains a 
bottleneck.

2.	 Computer vision can greatly increase the efficiency, repeatability and accuracy of 
image review. Computer vision uses image features, such as colour, shape and 
texture to infer image content.

3.	 I provide a brief primer on ecological computer vision to outline its goals, tools and 
applications to animal ecology.

4.	 I reviewed 187 existing applications of computer vision and divided articles into 
ecological description, counting and identity tasks.

5.	 I discuss recommendations for enhancing the collaboration between ecologists and 
computer scientists and highlight areas for future growth of automated image 
analysis.
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1  | INTRODUCTION

Observing biodiversity can be expensive, logistically difficult and 
time-consuming. Many animals are rare, secretive and inhabit remote 
areas. Animal presence and behaviour may vary over broad spatial 
and temporal scales, and depend on important but infrequently ob-
served events, such as breeding, predation or mortality. Direct obser-
vation of these events can be disruptive to wildlife, and potentially 
dangerous to observers. To reduce cost, labour and logistics of ob-
servation, ecologists are increasingly turning to greater automation to 
locate, count and identify organisms in natural environments (Pimm 
et al., 2015). While image capture has greatly increased sampling, 
our ability to analyse images remains a bottleneck in turning these 
data into information on animal presence, abundance and behaviour. 
Computer vision can increase the breadth, duration and repeatability 
of image-based ecological studies through automated image analysis 
(Dell et al., 2014; Kühl & Burghardt, 2013; Pennekamp & Schtickzelle, 

2013). Computer vision is a form of image-based computer science 
that uses pixel values to infer image content (LeCun, Bengio, & Hinton, 
2015). The atomic unit of data in computer vision is an image pixel 
that represents colour in the visible spectrum. Pixels are arranged 
into groups such that pixel proximity, orientation and similarity create 
a group identity. Pixel values, and the resulting group identity, may 
change among images to create a sequence of objects. By creating 
rules for the pixel characteristics, relationships and changes through 
time, computer vision algorithms can replace laborious hand-review 
of ecological images.

The growth in ecological image data is fuelled by its economy, ef-
ficiency and scalability (Bowley, Andes, Ellis-Felege, & Desell, 2017; 
Dell et al., 2014). Massive repositories of image data are available 
for ecological analysis, uploaded from field-based cameras (Giraldo-
Zuluaga, Gomez, Salazar, & Diaz-Pulido, 2017; Swanson et al., 2015; 
Zhang, He, Cao, & Cao, 2016) or captured by citizen scientists (Desell 
et al., 2013; Joly et al., 2014). For example, research grade datasets 

www.wileyonlinelibrary.com/journal/jane
http://orcid.org/0000-0002-2176-7935
mailto:weinsteb@oregonstate.edu


534  |    Journal of Animal Ecology WEINSTEIN

from iNaturalist (675,000 images of 5,000 species, Van Horn et al., 
2017) and Zooniverse (1.2 million images of 40 species; Swanson 
et al., 2015), highlight the growth in high-quality images captured by 
researchers and the public. However, image data collection has greatly 
outpaced image analysis tools. While a human may be better at find-
ing animals in time-lapse video (Weinstein, 2015), or have a greater 
knowledge of bird identification (Berg et al., 2014), when confronted 
with 100,000 images, it is difficult to find the time, organization and 
concentration to validate each image manually. My aim is to describe 
the ongoing work in utilizing computer vision for animal ecology, pro-
vide a brief description of the concepts that unite computer vision al-
gorithms, and describe areas for collaboration and growth with the 
computer vision community.

2  | APPLICATIONS OF COMPUTER VISION 
TO ANIMAL ECOLOGY

Ecological computer vision has grown out of multiple disciplines, 
with contributions from computer science (Branson, Van Horn, 
Belongie, & Perona, 2014), astronomy (Arzoumanian, Holmberg, & 
Norman, 2005) and remote sensing (LaRue, Stapleton, & Anderson, 
2016). This article covers applications of computer vision to find, 
count and study animals in natural landscapes using images col-
lected in the human visual spectrum. Applications from specimen 
morphometrics, microscopy (Pennekamp & Schtickzelle, 2013) 
and animal tracking in laboratory settings are reviewed elsewhere 
(Dell et al., 2014; Robie, Seagraves, Egnor, & Branson, 2017). To 
find articles, I used Web of Science to search for “Computer Vision 
AND (Ecology OR Animals),” yielding 284 articles. I then performed 
three additional searches for articles using image analysis tools, but 
lacking the computer vision label: “Automated species measure-
ment AND images” (n = 103), “Automated species detection AND 
images” (n = 126) and “Automated species identification AND im-
ages” (n = 196). Finally, I reviewed the first 200 results from Google 
Scholar for “Computer Vision AND ecology” published since 2000. 
For all searches, articles were included based on the following 
criteria.

1.	 The article described a peer-reviewed application of computer 
vision. Articles introducing hardware for image capture, or re-
viewing existing applications, were excluded.

2.	 The article was aimed at answering an ecological question, broadly 
defined as the identity, demography and behaviour of animals in 
natural environments using images collected in human visual 
spectrum.

3.	 The application used an automated or semi-automated image anal-
ysis algorithm. Articles using manual review of images were 
excluded.

This search and filtering criteria resulted in 187 articles, with consis-
tent growth in computer vision applications over time (Figure 1). These 
articles used a variety of open source tools to aid image analysis (Table 1). 

I organized articles around three common tasks for ecological computer 
vision: description, counting and identification (Figure 2). From the per-
spective of image-based computer vision, description is the quantifica-
tion of the coloration, patterning and relative size of animals and their 
immediate surrounding environment. Counting is the detection and enu-
meration of animals within an image. Identity is the classification of an 
individual or species based on its appearance. For each of these tasks, 
my goal is to help ecologists grasp the current possibility for image au-
tomation by introducing basic terminology, applications and highlighting 
a case study.

3  | DESCRIPTION

Ecologist often seek to understand animal appearance and their re-
lationship to the surrounding environment using digital observations. 
The secretive nature of many animals makes direct description disrup-
tive and potentially dangerous to both the organism and researcher. 
Computer vision algorithms have greatly increased the ability to 
non-invasively measure organisms through image analysis (n = 56). 
To ascertain the size, position and spectral characteristics of ecologi-
cal objects in images, computer vision tools use image features (see 
Box 1) to find important pixels within and among images. Image fea-
tures are often areas of high turnover in pixel values, caused by edges 
of objects of interest. For example, to correctly outline a flying bird, 
algorithms might look for the areas where the wings intersect with 
the sky (Atanbori, Duan, Murray, Appiah, & Dickinson, 2016). Image 
features have been primarily used to study the evolutionary ecology 
of animal coloration (Stoddard, Kilner, & Town, 2014), shape (Lavy 
et al., 2015) and patterning (Levy, Lerner, & Shashar, 2014). Compared 
to human review, computer vision provides a more consistent way 
to score animal appearance across images by using non-RBG colour 
spaces, such as HSV or YChCr, which are less sensitive to changes 
in illumination and other image artefacts (Kühl & Burghardt, 2013; 
Troscianko, Skelhorn, & Stevens, 2017). By comparing image features, 
computer vision can be used to study animal camouflage (Tankus 
& Yeshurun, 2009) and biomimicry (Yang, Wang, Liang, & Møller, 
2016). For example, Stoddard et al. (2016) developed edge detection 
algorithms to evaluate the relative camouflage of nesting shorebird 
species as compared to their nesting substrate (Figure 3b).

Image features can also be used to measure size in both specimens 
and free-living animals (Olsen & Westneat, 2015). Based on multi-
ple images from pairs of cameras, computer vision tools have been 
used to describe animal size and shape, such as in whales (Howland, 
Macfarlane, & Tyack, 2012), and coral (Jones, Cantin, Berkelmans, 
Sinclair, & Negri, 2008; Naumann, Niggl, Laforsch, Glaser, & Wild, 
2009). The next frontier for image-based ecological description is in 
3D reconstruction of morphology and movement (Haggag, Abobakr, 
Hossny, & Nahavandi, 2016; Lavy et al., 2015). Three-dimensional im-
aging has recently been used to track animal behaviour within large in-
door enclosures (e.g. Barnard et al., 2016), and applying these tools to 
animals in natural landscapes is an developing area of research (Robie 
et al., 2017).
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F IGURE  1 The growth in computer 
vision applications over time (n = 187). 
From the perspective of image-based 
computer vision, description is the 
quantification of image features to describe 
coloration, patterning and relative size 
of animals and their surrounding habitat. 
Counting is the detection and enumeration 
of animals within an image. Identity is the 
classification of an individual or species 
based on its appearance

TABLE  1 Commonly used tools for computer vision application to ecology

Name Reference Task Comments

OpenCV Bradski (2000) Description, Counting, 
Identity

Source library for computer vision algorithms in 
python/java/C++

ImageJ Abràmoff et al. (2004) Description, Counting Segmentation and thresholding

BISQUE Kvilekval et al. (2009) Description, Counting Also serves as a hosting platform for image analysis 
tools

Agisoft Photoscan – Description Commercial software for 3D model reconstruction 
from images

StereoMorph Olsen and Westneat (2015) Description R package for 3d reconstruction and image 
calibration

NaturePatternMatch Stoddard et al. (2014) Description Comparing features among ecological images

MotionMeerkat Weinstein (2015) Counting Background subtraction for animal detection in 
videos and images.

Google Cloud API – Identity Classification of image content using Cloud Vision 
API, deep learning source library using TensorFlow

Merlin Van Horn et al. (2015) Identity Bird identification app for iPhone and Android

Wildbook Crall et al. (2013) Identity Individual identification and data management tools
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3.1 | Case study: High-resolution mapping of 
penguin colonies using structure-through-motion

To map habitat suitability, ecologists often use remotely sensed en-
vironmental variables as a proxy for the environmental conditions en-
countered by animals. While traditional remote sensing captures coarse 

changes in habitat quality, animals experience the environment at fine-
scales, in three dimensions, and from a landscape perspective. McDowall 
and Lynch (2017) generated ultra-fine scale (<1 cm) maps of penguin 
colonies by stitching together thousands of overlapping images using a 
technique called structure-from-motion. The resulting three-dimensional 
surface allowed fine-scale mapping of Gentoo penguin (Pygoscelis papua) 

F IGURE  2 The number of ecological computer vision articles (n = 187) for each focal taxa and computer vision task. From the perspective 
of image-based computer vision, description is the quantification of image features to describe coloration, patterning and relative size of 
animals and their surrounding habitat. Counting is the detection and enumeration of animals within an image. Identity is the classification of an 
individual or species based on its appearance

Box 1 Glossary of key computer vision terms for ecological image analysis

Description

Features: Pixel properties based on the colour, texture, or relationship to surrounding pixels.

Colour space: Numeric system used to describe the spectral information contained in pixel values.

Edges: Image locations with abrupt changes in pixel values, also known as ‘corners’. Often used to find corresponding points between images.

Structure-from-motion: Approach for reconstructing the 3D structure of a stationary object based on stitching together images taken from 
multiple angles.

Optical flow: The identification of analogous pixels among images, used to track object or camera movement.

Counting

Segmentation: The process of partitioning images into labelled regions.

Contours: Curved lines which encompass connected pixels with similar colour, intensity or texture.

Blobs: Groups of connected pixels with a fixed identity or label.

Image morphology: Image processing tools for manipulating pixels based on the values of the surrounding pixels. For example, ‘opening’ reduces 
noise in the foreground by removing weakly connected pixels.

Background subtraction: The removal of irrelevant content estimated from multiple frames of video. Subtracting the static portions of the frame 
from the current image yields the estimated foreground objects.

Identity

Labelled training data: Images with known objects of interests that can be used to train machine learning classifiers.

Unsupervised classification: Multidimensional clustering algorithms to divide pixels into an a priori number of groups based on image features.

Neural-network or ‘deep learning’: A hierarchical machine learning classifier that uses training data to categorize image content without a priori 
specification of image features.
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nests and captured variation in slope and aspect that may have been 
missed by coarser satellite-based remote sensing (Figure 3a).

4  | COUNTING

While remotely placed cameras provide a low-cost alternative to 
human observers, the amount of data generated by field studies can 
be overwhelming. The potentially high cost of image review and stor-
age means that finding the animals of interest within large batches of 
images can improve the speed and efficiency of biodiversity moni-
toring. Even motion triggered camera traps suffer from many false-
positive images due to wind and moving vegetation. In computer 
vision, finding novel objects within series of images can be achieved 
using background subtraction, which distinguishes sedentary objects, 
such as trees and clouds, from moving objects, such as animals, within 
videos or groups of images (Price Tack et al., 2016; Ren, Han, & He, 
2013; Weinstein, 2015) (Figure 4a). A background model is created 

by computing an expected image based on the previous pixel values 
(Stauffer & Grimson, 1999). The foreground model describes the non-
background pixels as a function of the difference between the previ-
ous background model and the current frame (Figure 4a; Christiansen, 
Nielsen, Steen, Jørgensen, & Karstoft, 2016; Sobral & Vacavant, 
2014). The background model changes over time based on new pixel 
values, thereby reducing false positives from shifts in illumination 
and external movement, such as wind, waves or camera shake. Once 
images have been divided into foreground and background pixels 
(known as segmentation), objects are partitioned into discrete groups, 
with connected sets of pixels corresponding to individual organisms.

I found 55 articles that used a form of background subtraction to de-
tect and count animals, primarily for mammals (n = 24) and birds (n = 22). 
These studies report high accuracy in removing empty frames, but there 
were persistent challenges in reducing false positives from strong wind 
and other extraneous movement in heterogeneous environments (Price 
Tack et al. 2016). Tailoring detection algorithms to individual taxa can 
greatly improve accuracy, for example, Zeppelzauer (2013) reported 

F IGURE  3 Applications of computer vision to describing ecological objects. (1) From McDowall and Lynch (2017), a three-dimensional 
map of the Port Lockroy penguin colony was created by overlaying hundreds of individual photographs (1a) to describe the location of Gentoo 
penguin (Pygoscelis papua) nests (1b). Flags denote occupied penguin nests identified in the images. The surface was turned into digital elevation 
map (1c) to measure the relative positive and habitat choice by individual penguins for nest site selection. (2) From Stoddard et al. (2016), snowy 
plover (Charadrius nivosus) nest clutch (2a) segmented into egg and background regions (2b), edge detection was used to quantify edges (2c), in 
order to calculate the degree of egg camouflage compared to the background substrate (2d). See Acknowledgements for credits and permissions 
[Colour figure can be viewed at wileyonlinelibrary.com]

(a) (b) (c)

(a) (b) (c) (d)

www.wileyonlinelibrary.com
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>95% accuracy in detecting African elephants (Loxodonta cyclotis) by 
building a colour model from training data. State-of-the-art approaches 
(Ren et al., 2013; Zhang et al., 2016) can both identify images of interest, 
as well as define where within an image an animal occurs. This is a crucial 
first step in cropping photos to analyse species identity (see below).

New computer vision tools have opened new avenues for image 
data collection. Automated count data have been taken from time-lapse 
video (Steen & Ski, 2014), camera traps (Matuska, Hudec, Kamencay, 
Benco, & Zachariasova, 2014), uploaded by citizen scientists (Kosmala 
et al., 2016) and captured from airborne sensors (van Andel et al., 2015). 
In particular, automated detection algorithms are increasingly used to 
find large animals within remotely sensed imagery captured by high-
resolution commercial satellites (Barber-Meyer, Kooyman, & Ponganis, 
2007) and unmanned aerial vehicles (Hodgson, Kelly, & Peel, 2013; Liu, 
Chen, & Wen, 2015; van Andel et al., 2015). Commercial satellite im-
agery offers wide spatial coverage at sub-metre resolution, but is lim-
ited by atmospheric conditions, temporal coverage and high cost. To 
find animals within this imagery, studies have used pixel-based analysis 
(Fretwell, Staniland, & Forcada, 2014), image differencing (LaRue et al., 
2015) and supervised classification using machine learning (Yang et al., 
2014). Several applications focus on aggregations of individuals in colo-
nial breeding sites due to their large spatial size and distinct visual signa-
ture on the surrounding environment (Barber-Meyer et al., 2007; Lynch, 
White, Black, & Naveen, 2012). While results from Southern right whales 
(Eubalaena australis) (Fretwell et al., 2014), polar bears (Ursus maritimus) 
(LaRue et al., 2015), and savanna ungulates (Yang et al., 2014) highlight 
the promise of this technology, considerable automation is needed to 

reduce the laborious hand validation of images at scale (LaRue et al., 
2016).

In comparison to satellite-based imagery, unmanned aerial vehicles 
have the advantages of greater temporal flexibility and low cost (Seymour, 
Dale, Hammill, Halpin, & Johnston, 2017). The trade-off is the decreased 
spatial extent limited by flight time and legal restrictions (Crutsinger, 
Short, & Sollenberger, 2016). UAVs have been successfully used to count 
waterbird populations, due to the birds’ open habitat and colonial breed-
ing strategy (Descamps, Béchet, Descombes, Arnaud, & Zerubia, 2011; 
Groom, Krag Petersen, Anderson, & Fox, 2011). Chabot and Francis 
(2016) reported that automated counts of waterbirds were within 3%–5% 
of human counts across 16 applications. Recent improvements of UAV-
based counting include utilizing hyperspectral data (Beijboom et al., 2016; 
Witharana & Lynch, 2016), pixel-shape modelling (Liu et al., 2015) and 
combining background subtraction with machine learning (Torney et al., 
2016) (Figure 4b). Recent efforts to count animals use deep learning neu-
ral networks are promising, but require tens of thousands of training im-
ages gathered by human annotation (Bowley et al., 2017).

4.1 | Case study: Counting hummingbird–plant 
interactions using background subtraction

To predict the rules that determine the interactions among species, 
ecologists often use the frequency of interactions as a proxy for fit-
ness effects (Bartomeus et al., 2016). To determine the number of 
visits between birds and flowers, Weinstein and Graham (2017) used 
time-lapse cameras to film multiple days of flower visitation. Using 

F IGURE  4 Applications of computer vision to detecting and counting ecological objects. (a) Background subtraction of video frames yields 
the desired motion object (Weinstein, 2015) based on changes in past pixel values. (b) Counting wildebeest from imagery captured by unmanned 
aerial vehicle in Tanzania (Torney et al., 2016). The left panel are correct identifications of wildebeest, the right panel are false positives caused 
by a flock of juvenile ostrich. See Acknowledgements for credits and permission [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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background subtraction algorithms, they were able to process over 
8,000 hr of hummingbird visitation videos (Weinstein, 2015). This 
video-based strategy allowed sampling at much greater temporal 
extents, and therefore minimized the potential for overlooking rare 
interactions. From these data, the authors modelled species interac-
tions based on morphological similarity and flower abundance to test 
predictions of optimal foraging theory (Weinstein & Graham, 2017).

5  | IDENTITY

Ecologists often need to inventory the diversity of taxa or the number 
of individuals of a given species in a geographic area. The strong re-
lationship between sampling duration and observed species richness 
means that data collection can often be expensive and logistically 

challenging. Image-based animal classification has the potential to re-
duce costs, allow greater geographic coverage and cause less distur-
bance to potentially sensitive ecosystems.

For individual-level identification, computer vision algorithms use 
images of known individuals to match new images based on the similar-
ity of phenotypic patterns (Figure 5a). By matching the image features 
among images, matching algorithms score the likelihood that two im-
ages are of the same individual. For animals with unique markings, this 
can be a low-cost alternative to expensive trapping and tagging pro-
grams. This approach was pioneered for fluke identification in marine 
mammals (Adams, Speakman, Zolman, & Schwacke, 2006; Beekmans, 
Whitehead, Huele, Steiner, & Steenbeek, 2005; Gilman, Hupman, 
Stockin, & Pawley, 2016) and has since been applied on a wide range of 
taxa, from zebras (Equus grevyi) (Crall, Stewart, Berger-Wolf, Rubenstein, 
& Sundaresan, 2013), to elephants (L. cyclotis) (Ardovini, Cinque, & 

F IGURE  5 Application of computer vision to predicting individual and species identity: (a) Matching algorithms score the similarity of 
photographed zebras to a library of known images to track individuals over time (Crall et al. 2013). (b) From Marburg and Bigham (2016), a deep 
learning classifier is trained on a starfish species class based on training data of labelled images. The classifier is then used to predict testing data 
to evaluate the accuracy of the approach. In this example, the training and testing data are separate objects within the same image frame based 
on bounding boxes that distinguish animals from the image background. See Acknowledgements for image credits and permissions [Colour 
figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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Sangineto, 2008), and box turtles (Terrapene carolina) (Cross, Lipps, 
Sapak, Tobin, & Root, 2014). These methods are effective in identifying 
animals with complex markings, such as giraffes (Giraffa camelopardalis) 
(Bolger, Morrison, Vance, Lee, & Farid, 2012), whale sharks (Rhincodon 
typus) (Arzoumanian et al., 2005) and catfish (Rineloricaria aequalicuspis) 
(Dala-Corte, Moschetta, & Becker, 2016), and range from completely 
automated (Town, Marshall, & Sethasathien, 2013), to involving human 
feedback during matching (Duyck et al., 2015). Crall et al. (2013) re-
ported accuracy rates ranging from 95% for Grey’s zebras (E. grevyi) to 
100% for jaguars (Panthera onca) using the HotSpotter algorithm, which 
can be accessed through the Wildbook web platform.

Automated species identification is rapidly developing field with an ex-
plosion of new approaches and promising results (Figure 5b). While initial 
attempts focused on traditional machine learning with an a priori division 
of image features (e.g. Blanc, Lingrand, & Precioso, 2014; Lytle et al., 2010), 
the accuracy of these approaches was generally low (>70%). However, 
recent advances using new deep learning models have greatly improved 
model performance across a wide variety of animal taxa, from coral 
(Beijboom et al., 2016) to large mammals (Gomez, Diez, Salazar, & Diaz, 
2016) (Table 2). The majority of applications I reviewed had a particular 
geographic focus, for example the rodent community of the Mojave des-
ert (Wilber et al., 2013). The next stage is a general test of machine learn-
ing models across systems to find the optimal number of training images, 
model parameters and the required spectral diversity of potential classes 
that leads to increased predictive performance (Van Horn et al., 2015).

5.1 | Case study: Merlin, a bird identification app 
powered by deep learning neural networks

The Merlin project demonstrates the potential for revolutionary 
change in ecological identification (Farnsworth et al., 2013). Merlin 

is the joint project from Visipedia and the Cornell Laboratory of 
Ornithology to identify 600 common North American bird species 
(Van Horn et al., 2015). The identification algorithm uses Google’s 
TensorFlow deep learning platform, as well as citizen science data 
from eBird to generate potential species lists given a user’s location 
(Branson et al., 2010). While Merlin is primarily geared towards citi-
zen scientists, pairing this technology with the growing number of 
publically accessible photos (e.g. iNaturalist.org) promises to bolster 
observations of rare and cryptic species for biodiversity monitoring.

6  | COLLABORATION WITH COMPUTER 
VISION RESEARCHERS

The combination of high-quality data, applied use cases and interesting 
problems will lead to productive collaborations among ecologists and 
computer vision researchers. While computer vision tools are becom-
ing more accessible to ecologists, state-of-the-art solutions will benefit 
from collaboration with the computer vision community. Finding and 
maintaining these collaborations can be difficult given the difference in 
terminology and aims of ecologists vs. computer science researchers. 
I suggest highlighting three areas of potential mutual interest:

1.	 Ecology has intriguing and challenging technical problems. The 
natural world is complex and heterogeneous. Changes in illu-
mination and backgrounds make animal detection difficult. 
Changes in organism appearance and shape are challenging for 
classification algorithms. Ecologists should emphasize the gen-
erality of their proposed problem, and frame collaborations as 
a potential area for development of new algorithms, rather 
than as an applied example.

Reference
Training 
images Taxa

Species or 
classes

Average 
accuracy (%)

Wilber et al. (2013) 5,362 Mammals, Reptiles 7 76.4

Yu et al. (2013) 22,533 Mammals 18 83.8

Chen, Han, He, Kays, & 
Forrester (2014)

9,530 Rainforest 
Mammals

19 38.3

Hernández-Serna et al. 
(2014)

1,800 Fish, Butterflies 32 92.87

92 11 93.25

Atanbori et al. (2016) – Birds 7 89.0

Berg et al. (2014) Avg. of 200 
per species

Birds 500 66.6

Beijboom et al. (2016) 28,400 Coral 10 88.9

Marburg & Bigham (2016) 8,586 Benthic inverte-
brates and fish

10 89.0

Gomez et al. (2016) 14,346 Savanna animals 26 88.9

Qin, Li, Liang, Peng, & 
Zhang (2016)

22,370 Fish 23 98.6

Villon et al. (2016) 1,400 Fish 8 65.8

Sun et al. (2017) 9,160 Fish 15 77.27

Feng et al. (2016) 4,530 Moths 50 53.12

TABLE  2 Evaluation statistics for recent 
computer vision applications to predicting 
species-level identity. Articles shown only 
include applications to more than five 
species and quantified the classification 
accuracy using a testing dataset. Accuracy 
is only reported for the best performing 
model in each paper. Articles are ordered 
by publication date
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2.	 Ecologists can improve computer vision algorithms by providing 
biological context (Berg et al., 2014). Ecological rules that may 
seem to be common sense, such as “there should not be fish on 
land,” require neural networks to identify both objects in an image 
(“fish”), scene context (“land”) and the relationship between image 
features. One way to overcome this would be to cumbersomely 
train an algorithm with thousands of images of land without fish. 
Ecology provides a more straightforward and effective method by 
using image metadata, such as time or location, to assist in image 
classification. For example, combining image location with expert 
vetted species regional checklists might show that only a few spe-
cies with a given coloration occur in given location. Similarly, 
image context can assist future predictions. For example, if an al-
gorithm identifies a wildebeest in an aerial image, it may be more 
likely to also find zebras (Swanson et al., 2015). Finally, ecological 
context can reduce the burden of gathering training data by ex-
ploiting the inherent conservation of body plans among animals to 
create hierarchical labels. Rather than thinking of all potential in-
dividual categories (e.g. black bear, grizzly bear, polar bear, etc.), 
hierarchical labelling exploits the connections among animals to 
create nested categories (e.g. Ursus). Tree-based classification ap-
proaches have been effective in other areas of computer vision, 

and fits naturally with the study of evolutionary taxonomy (Favret 
& Sieracki, 2016).

3.	 Ecologists are collecting vast amounts of labelled data. Computer 
vision applications, and especially deep learning approaches, re-
quire significant training and testing data. High-quality datasets 
are difficult to find, and a lack of labelled data is a major obstacle in 
computer vision research (Belongie & Perona, 2016; Berg et al., 
2010; Gomez et al., 2016). Packaging image datasets and making 
them publicly available will raise awareness of the opportunities 
for ecological collaboration.

7  | FUTURE GROWTH

The future of ecological computer vision will combine new algorithms, 
data and collaborations to study animals in natural environments. 
The rise of neural networks as the central tool in image classifica-
tion (Gomez et al., 2016; LeCun et al., 2015), background subtraction 
(Christiansen et al., 2016) and image description (Mohanty, Hughes, 
& Salathé, 2016) is a key development that with bring new oppor-
tunities for ecological computer vision (Figure 6). Until recently, the 
growth of these tools has been slowed by a lack of access to cutting 

F IGURE  6 Overview of a neural network for machine learning prediction: (a) Pixel convolutions create combinations of input predictors 
by down sampling and pooling image features, (b) a generic deep learning structure, input data passes through hidden layers, called nodes, to 
create pathways from predictors to prediction. The activation score at each of these nodes is used to estimate model weights. In current deep 
learning applications, there will be many hidden layers of nodes to create combinations of input predictors [Colour figure can be viewed at 
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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edge algorithms. The recent unveiling of the Google Cloud Machine 
Learning platform could be a quantum leap in access for ecologists. 
Released in 2016, Google gives users access to a web service to retrain 
models using Google’s popular TensorFlow software. TensorFlow is a 
computational graph algorithm that represents mathematical opera-
tions as nodes and stores data in multidimensional arrays. Rather than 
building a model from scratch for each application, users can retrain 
pre-built models to add new image classes. Known as transfer learn-
ing, this approach uses the strengths of the underlying architecture, 
but adds flexibility for specialized problems. This greatly reduces the 
time and expertise needed to implement image analysis solutions.

A persistent challenge in computer vision applications is collecting 
sufficient labelled data (Berg et al., 2010). New data collection oppor-
tunities through data mining (Zhang, Korayem, Crandall, & Lebuhn, 
2012) and citizen scientists will broaden the potential sources of la-
belled ecological data (Swanson, Kosmala, Lintott, & Packer, 2016). 
The natural excitement for plants and animals means that gathering 
further labelled data is possible through online citizen scientist efforts 
(Van Horn et al., 2015). In particular, projects on the Zooniverse, iNat-
uralist and Wildlife @home web platforms provide a way of engaging 
important user communities (Desell et al., 2013; Kosmala et al., 2016). 
The next step is integrating citizen scientists as a part of greater au-
tomation, rather as an alternative to automation. Known as “human 
in loop” approaches, this strategy can learn directly from human an-
notations to provide feedback and recommendation for future data 
labelling (Branson et al., 2010; Reda, Mateevitsi, & Offord, 2013). This 
will combine the expertise and excitement from citizen scientists, with 
the greater standardization of automation.
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