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Abstract
1.	 A	central	goal	of	animal	ecology	is	to	observe	species	in	the	natural	world.	The	
cost	and	challenge	of	data	collection	often	limit	the	breadth	and	scope	of	eco-
logical	 study.	Ecologists	often	use	 image	capture	 to	bolster	data	 collection	 in	
time	 and	 space.	 However,	 the	 ability	 to	 process	 these	 images	 remains	 a	
bottleneck.

2.	 Computer	vision	can	greatly	increase	the	efficiency,	repeatability	and	accuracy	of	
image	 review.	 Computer	 vision	 uses	 image	 features,	 such	 as	 colour,	 shape	 and	
	texture	to	infer	image	content.

3.	 I	provide	a	brief	primer	on	ecological	computer	vision	to	outline	its	goals,	tools	and	
applications	to	animal	ecology.

4.	 I	 reviewed	187	existing	applications	of	computer	vision	and	divided	articles	 into	
ecological	description,	counting	and	identity	tasks.

5.	 I	discuss	recommendations	for	enhancing	the	collaboration	between	ecologists	and	
computer	 scientists	 and	 highlight	 areas	 for	 future	 growth	 of	 automated	 image	
analysis.
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1  | INTRODUCTION

Observing	 biodiversity	 can	 be	 expensive,	 logistically	 difficult	 and	
time-	consuming.	Many	animals	are	rare,	secretive	and	inhabit	remote	
areas.	 Animal	 presence	 and	 behaviour	 may	 vary	 over	 broad	 spatial	
and	 temporal	 scales,	 and	depend	on	 important	but	 infrequently	ob-
served	events,	such	as	breeding,	predation	or	mortality.	Direct	obser-
vation	of	 these	 events	 can	 be	 disruptive	 to	wildlife,	 and	potentially	
dangerous	 to	 observers.	To	 reduce	 cost,	 labour	 and	 logistics	 of	 ob-
servation,	ecologists	are	increasingly	turning	to	greater	automation	to	
locate,	 count	and	 identify	organisms	 in	natural	environments	 (Pimm	
et	al.,	 2015).	 While	 image	 capture	 has	 greatly	 increased	 sampling,	
our	 ability	 to	 analyse	 images	 remains	 a	 bottleneck	 in	 turning	 these	
data	into	information	on	animal	presence,	abundance	and	behaviour.	
Computer	vision	can	increase	the	breadth,	duration	and	repeatability	
of	image-	based	ecological	studies	through	automated	image	analysis	
(Dell	et	al.,	2014;	Kühl	&	Burghardt,	2013;	Pennekamp	&	Schtickzelle,	

2013).	Computer	vision	 is	 a	 form	of	 image-	based	 computer	 science	
that	uses	pixel	values	to	infer	image	content	(LeCun,	Bengio,	&	Hinton,	
2015).	The	atomic	unit	of	data	 in	 computer	vision	 is	 an	 image	pixel	
that	 represents	 colour	 in	 the	 visible	 spectrum.	 Pixels	 are	 arranged	
into	groups	such	that	pixel	proximity,	orientation	and	similarity	create	
a	 group	 identity.	 Pixel	values,	 and	 the	 resulting	 group	 identity,	may	
change	 among	 images	 to	 create	 a	 sequence	 of	 objects.	 By	 creating	
rules	for	the	pixel	characteristics,	relationships	and	changes	through	
time,	 computer	vision	algorithms	can	 replace	 laborious	hand-	review	
of	ecological	images.

The	growth	in	ecological	image	data	is	fuelled	by	its	economy,	ef-
ficiency	and	 scalability	 (Bowley,	Andes,	Ellis-	Felege,	&	Desell,	 2017;	
Dell	 et	al.,	 2014).	 Massive	 repositories	 of	 image	 data	 are	 available	
for	 ecological	 analysis,	 uploaded	 from	 field-	based	 cameras	 (Giraldo-	
Zuluaga,	Gomez,	Salazar,	&	Diaz-	Pulido,	2017;	Swanson	et	al.,	2015;	
Zhang,	He,	Cao,	&	Cao,	2016)	or	captured	by	citizen	scientists	(Desell	
et	al.,	 2013;	Joly	 et	al.,	 2014).	 For	 example,	 research	grade	datasets	
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from	 iNaturalist	 (675,000	 images	 of	 5,000	 species,	Van	Horn	 et	al.,	
2017)	 and	 Zooniverse	 (1.2	million	 images	 of	 40	 species;	 Swanson	
et	al.,	2015),	highlight	the	growth	in	high-	quality	images	captured	by	
researchers	and	the	public.	However,	image	data	collection	has	greatly	
outpaced	image	analysis	tools.	While	a	human	may	be	better	at	find-
ing	animals	 in	 time-	lapse	video	 (Weinstein,	2015),	or	have	a	greater	
knowledge	of	bird	identification	(Berg	et	al.,	2014),	when	confronted	
with	100,000	images,	it	is	difficult	to	find	the	time,	organization	and	
concentration	to	validate	each	image	manually.	My	aim	is	to	describe	
the	ongoing	work	in	utilizing	computer	vision	for	animal	ecology,	pro-
vide	a	brief	description	of	the	concepts	that	unite	computer	vision	al-
gorithms,	 and	 describe	 areas	 for	 collaboration	 and	 growth	with	 the	
computer	vision	community.

2  | APPLICATIONS OF COMPUTER VISION 
TO ANIMAL ECOLOGY

Ecological	 computer	 vision	 has	 grown	 out	 of	multiple	 disciplines,	
with	 contributions	 from	 computer	 science	 (Branson,	 Van	 Horn,	
Belongie,	&	Perona,	2014),	astronomy	(Arzoumanian,	Holmberg,	&	
Norman,	2005)	and	remote	sensing	(LaRue,	Stapleton,	&	Anderson,	
2016).	This	 article	 covers	 applications	of	 computer	 vision	 to	 find,	
count	 and	 study	 animals	 in	 natural	 landscapes	 using	 images	 col-
lected	 in	 the	 human	 visual	 spectrum.	Applications	 from	 specimen	
morphometrics,	 microscopy	 (Pennekamp	 &	 Schtickzelle,	 2013)	
and	animal	tracking	 in	 laboratory	settings	are	reviewed	elsewhere	
(Dell	 et	al.,	 2014;	 Robie,	 Seagraves,	 Egnor,	 &	 Branson,	 2017).	 To	
find	articles,	I	used	Web	of	Science	to	search	for	“Computer	Vision	
AND	(Ecology	OR	Animals),”	yielding	284	articles.	I	then	performed	
three	additional	searches	for	articles	using	image	analysis	tools,	but	
lacking	 the	 computer	 vision	 label:	 “Automated	 species	 measure-
ment	AND	 images”	 (n	=	103),	 “Automated	 species	detection	AND	
images”	 (n	=	126)	 and	 “Automated	 species	 identification	AND	 im-
ages”	(n	=	196).	Finally,	I	reviewed	the	first	200	results	from	Google	
Scholar	for	“Computer	Vision	AND	ecology”	published	since	2000.	
For	 all	 searches,	 articles	 were	 included	 based	 on	 the	 following	
criteria.

1. The	 article	 described	 a	 peer-reviewed	 application	 of	 computer	
vision.	 Articles	 introducing	 hardware	 for	 image	 capture,	 or	 re-
viewing	 existing	 applications,	 were	 excluded.

2. The	article	was	aimed	at	answering	an	ecological	question,	broadly	
defined	as	 the	 identity,	demography	and	behaviour	of	animals	 in	
natural	 environments	 using	 images	 collected	 in	 human	 visual	
spectrum.

3. The	application	used	an	automated	or	semi-automated	image	anal-
ysis	 algorithm.	 Articles	 using	 manual	 review	 of	 images	 were	
excluded.

This	search	and	filtering	criteria	resulted	in	187	articles,	with	consis-
tent	growth	in	computer	vision	applications	over	time	(Figure	1).	These	
articles	used	a	variety	of	open	source	tools	to	aid	image	analysis	(Table	1).	

I	organized	articles	around	three	common	tasks	for	ecological	computer	
vision:	description,	counting	and	identification	(Figure	2).	From	the	per-
spective	of	image-	based	computer	vision,	description	is	the	quantifica-
tion	of	the	coloration,	patterning	and	relative	size	of	animals	and	their	
immediate	surrounding	environment.	Counting	is	the	detection	and	enu-
meration	of	animals	within	an	image.	Identity	is	the	classification	of	an	
individual	or	species	based	on	its	appearance.	For	each	of	these	tasks,	
my	goal	is	to	help	ecologists	grasp	the	current	possibility	for	image	au-
tomation	by	introducing	basic	terminology,	applications	and	highlighting	
a	case	study.

3  | DESCRIPTION

Ecologist	often	seek	to	understand	animal	appearance	and	their	 re-
lationship	to	the	surrounding	environment	using	digital	observations.	
The	secretive	nature	of	many	animals	makes	direct	description	disrup-
tive	and	potentially	dangerous	to	both	the	organism	and	researcher.	
Computer	 vision	 algorithms	 have	 greatly	 increased	 the	 ability	 to	
non-	invasively	 measure	 organisms	 through	 image	 analysis	 (n	=	56).	
To	ascertain	the	size,	position	and	spectral	characteristics	of	ecologi-
cal	objects	 in	 images,	computer	vision	tools	use	 image	features	 (see	
Box	1)	to	find	important	pixels	within	and	among	images.	Image	fea-
tures	are	often	areas	of	high	turnover	in	pixel	values,	caused	by	edges	
of	objects	of	interest.	For	example,	to	correctly	outline	a	flying	bird,	
algorithms	might	 look	 for	 the	areas	where	 the	wings	 intersect	with	
the	sky	(Atanbori,	Duan,	Murray,	Appiah,	&	Dickinson,	2016).	Image	
features	have	been	primarily	used	to	study	the	evolutionary	ecology	
of	 animal	 coloration	 (Stoddard,	 Kilner,	 &	 Town,	 2014),	 shape	 (Lavy	
et	al.,	2015)	and	patterning	(Levy,	Lerner,	&	Shashar,	2014).	Compared	
to	 human	 review,	 computer	 vision	 provides	 a	more	 consistent	way	
to	score	animal	appearance	across	 images	by	using	non-	RBG	colour	
spaces,	 such	 as	HSV	or	YChCr,	which	 are	 less	 sensitive	 to	 changes	
in	 illumination	 and	 other	 image	 artefacts	 (Kühl	 &	 Burghardt,	 2013;	
Troscianko,	Skelhorn,	&	Stevens,	2017).	By	comparing	image	features,	
computer	 vision	 can	 be	 used	 to	 study	 animal	 camouflage	 (Tankus	
&	 Yeshurun,	 2009)	 and	 biomimicry	 (Yang,	 Wang,	 Liang,	 &	 Møller,	
2016).	For	example,	Stoddard	et	al.	(2016)	developed	edge	detection	
	algorithms	 to	evaluate	 the	 relative	 camouflage	of	nesting	 shorebird	
species	as	compared	to	their	nesting	substrate	(Figure	3b).

Image	features	can	also	be	used	to	measure	size	in	both	specimens	
and	 free-	living	 animals	 (Olsen	 &	Westneat,	 2015).	 Based	 on	multi-
ple	 images	 from	pairs	 of	 cameras,	 computer	vision	 tools	 have	 been	
used	to	describe	animal	size	and	shape,	such	as	in	whales	(Howland,	
Macfarlane,	 &	 Tyack,	 2012),	 and	 coral	 (Jones,	 Cantin,	 Berkelmans,	
Sinclair,	 &	 Negri,	 2008;	 Naumann,	 Niggl,	 Laforsch,	 Glaser,	 &	Wild,	
2009).	The	next	frontier	for	 image-	based	ecological	description	 is	 in	
3D	reconstruction	of	morphology	and	movement	 (Haggag,	Abobakr,	
Hossny,	&	Nahavandi,	2016;	Lavy	et	al.,	2015).	Three-	dimensional	im-
aging	has	recently	been	used	to	track	animal	behaviour	within	large	in-
door	enclosures	(e.g.	Barnard	et	al.,	2016),	and	applying	these	tools	to	
animals	in	natural	landscapes	is	an	developing	area	of	research	(Robie	
et	al.,	2017).
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F IGURE  1 The	growth	in	computer	
vision	applications	over	time	(n	=	187).	
From	the	perspective	of	image-	based	
computer	vision,	description	is	the	
quantification	of	image	features	to	describe	
coloration,	patterning	and	relative	size	
of	animals	and	their	surrounding	habitat.	
Counting	is	the	detection	and	enumeration	
of	animals	within	an	image.	Identity	is	the	
classification	of	an	individual	or	species	
based	on	its	appearance

TABLE  1 Commonly	used	tools	for	computer	vision	application	to	ecology

Name Reference Task Comments

OpenCV Bradski	(2000) Description,	Counting,	
Identity

Source	library	for	computer	vision	algorithms	in	
python/java/C++

ImageJ Abràmoff	et	al.	(2004) Description,	Counting Segmentation	and	thresholding

BISQUE Kvilekval	et	al.	(2009) Description,	Counting Also	serves	as	a	hosting	platform	for	image	analysis	
tools

Agisoft	Photoscan – Description Commercial	software	for	3D	model	reconstruction	
from	images

StereoMorph Olsen	and	Westneat	(2015) Description R	package	for	3d	reconstruction	and	image	
calibration

NaturePatternMatch Stoddard	et	al.	(2014) Description Comparing	features	among	ecological	images

MotionMeerkat Weinstein	(2015) Counting Background	subtraction	for	animal	detection	in	
videos	and	images.

Google	Cloud	API – Identity Classification	of	image	content	using	Cloud	Vision	
API,	deep	learning	source	library	using	TensorFlow

Merlin Van	Horn	et	al.	(2015) Identity Bird	identification	app	for	iPhone	and	Android

Wildbook Crall	et	al.	(2013) Identity Individual	identification	and	data	management	tools
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3.1 | Case study: High- resolution mapping of 
penguin colonies using structure- through- motion

To	 map	 habitat	 suitability,	 ecologists	 often	 use	 remotely	 sensed	 en-
vironmental	variables	as	a	proxy	 for	 the	environmental	conditions	en-
countered	by	animals.	While	traditional	remote	sensing	captures	coarse	

changes	in	habitat	quality,	animals	experience	the	environment	at	fine-	
scales,	in	three	dimensions,	and	from	a	landscape	perspective.	McDowall	
and	 Lynch	 (2017)	 generated	 ultra-	fine	 scale	 (<1	cm)	maps	 of	 penguin	
colonies	by	stitching	together	thousands	of	overlapping	images	using	a	
technique	called	structure-	from-	motion.	The	resulting	three-	dimensional	
surface	allowed	fine-	scale	mapping	of	Gentoo	penguin	(Pygoscelis papua)	

F IGURE  2 The	number	of	ecological	computer	vision	articles	(n	=	187)	for	each	focal	taxa	and	computer	vision	task.	From	the	perspective	
of	image-	based	computer	vision,	description	is	the	quantification	of	image	features	to	describe	coloration,	patterning	and	relative	size	of	
animals	and	their	surrounding	habitat.	Counting	is	the	detection	and	enumeration	of	animals	within	an	image.	Identity	is	the	classification	of	an	
individual	or	species	based	on	its	appearance

Box 1 Glossary of key computer vision terms for ecological image analysis

Description

Features:	Pixel	properties	based	on	the	colour,	texture,	or	relationship	to	surrounding	pixels.

Colour space:	Numeric	system	used	to	describe	the	spectral	information	contained	in	pixel	values.

Edges:	Image	locations	with	abrupt	changes	in	pixel	values,	also	known	as	‘corners’.	Often	used	to	find	corresponding	points	between	images.

Structure-from-motion:	Approach	for	reconstructing	the	3D	structure	of	a	stationary	object	based	on	stitching	together	images	taken	from	
multiple	angles.

Optical flow:	The	identification	of	analogous	pixels	among	images,	used	to	track	object	or	camera	movement.

Counting

Segmentation:	The	process	of	partitioning	images	into	labelled	regions.

Contours:	Curved	lines	which	encompass	connected	pixels	with	similar	colour,	intensity	or	texture.

Blobs:	Groups	of	connected	pixels	with	a	fixed	identity	or	label.

Image morphology:	Image	processing	tools	for	manipulating	pixels	based	on	the	values	of	the	surrounding	pixels.	For	example,	‘opening’	reduces	
noise	in	the	foreground	by	removing	weakly	connected	pixels.

Background subtraction:	The	removal	of	irrelevant	content	estimated	from	multiple	frames	of	video.	Subtracting	the	static	portions	of	the	frame	
from	the	current	image	yields	the	estimated	foreground	objects.

Identity

Labelled training data:	Images	with	known	objects	of	interests	that	can	be	used	to	train	machine	learning	classifiers.

Unsupervised classification:	Multidimensional	clustering	algorithms	to	divide	pixels	into	an	a	priori	number	of	groups	based	on	image	features.

Neural-network or ‘deep learning’:	A	hierarchical	machine	learning	classifier	that	uses	training	data	to	categorize	image	content	without	a	priori	
specification	of	image	features.
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nests	 and	captured	variation	 in	 slope	and	aspect	 that	may	have	been	
missed	by	coarser	satellite-	based	remote	sensing	(Figure	3a).

4  | COUNTING

While	 remotely	 placed	 cameras	 provide	 a	 low-	cost	 alternative	 to	
human	observers,	the	amount	of	data	generated	by	field	studies	can	
be	overwhelming.	The	potentially	high	cost	of	image	review	and	stor-
age	means	that	finding	the	animals	of	interest	within	large	batches	of	
images	 can	 improve	 the	 speed	 and	 efficiency	 of	 biodiversity	moni-
toring.	Even	motion	 triggered	camera	 traps	suffer	 from	many	 false-	
positive	 images	 due	 to	 wind	 and	 moving	 vegetation.	 In	 computer	
vision,	finding	novel	objects	within	series	of	images	can	be	achieved	
using	background	subtraction,	which	distinguishes	sedentary	objects,	
such	as	trees	and	clouds,	from	moving	objects,	such	as	animals,	within	
videos	or	groups	of	images	(Price	Tack	et	al.,	2016;	Ren,	Han,	&	He,	
2013;	Weinstein,	2015)	 (Figure	4a).	A	background	model	 is	 created	

by	computing	an	expected	image	based	on	the	previous	pixel	values	
(Stauffer	&	Grimson,	1999).	The	foreground	model	describes	the	non-	
background	pixels	as	a	function	of	the	difference	between	the	previ-
ous	background	model	and	the	current	frame	(Figure	4a;	Christiansen,	
Nielsen,	 Steen,	 Jørgensen,	 &	 Karstoft,	 2016;	 Sobral	 &	 Vacavant,	
2014).	The	background	model	changes	over	time	based	on	new	pixel	
values,	 thereby	 reducing	 false	 positives	 from	 shifts	 in	 illumination	
and	external	movement,	such	as	wind,	waves	or	camera	shake.	Once	
images	 have	 been	 divided	 into	 foreground	 and	 background	 pixels	
(known	as	segmentation),	objects	are	partitioned	into	discrete	groups,	
with		connected	sets	of	pixels	corresponding	to	individual	organisms.

I	found	55	articles	that	used	a	form	of	background	subtraction	to	de-
tect	and	count	animals,	primarily	for	mammals	(n	=	24)	and	birds	(n	=	22).	
These	studies	report	high	accuracy	in	removing	empty	frames,	but	there	
were	persistent	challenges	in	reducing	false	positives	from	strong	wind	
and	other	extraneous	movement	in	heterogeneous	environments	(Price	
Tack	et	al.	2016).	Tailoring	detection	algorithms	to	 individual	 taxa	can	
greatly	 improve	 accuracy,	 for	 example,	 Zeppelzauer	 (2013)	 reported	

F IGURE  3 Applications	of	computer	vision	to	describing	ecological	objects.	(1)	From	McDowall	and	Lynch	(2017),	a	three-	dimensional	
map	of	the	Port	Lockroy	penguin	colony	was	created	by	overlaying	hundreds	of	individual	photographs	(1a)	to	describe	the	location	of	Gentoo	
penguin	(Pygoscelis papua)	nests	(1b).	Flags	denote	occupied	penguin	nests	identified	in	the	images.	The	surface	was	turned	into	digital	elevation	
map	(1c)	to	measure	the	relative	positive	and	habitat	choice	by	individual	penguins	for	nest	site	selection.	(2)	From	Stoddard	et	al.	(2016),	snowy	
plover	(Charadrius nivosus)	nest	clutch	(2a)	segmented	into	egg	and	background	regions	(2b),	edge	detection	was	used	to	quantify	edges	(2c),	in	
order	to	calculate	the	degree	of	egg	camouflage	compared	to	the	background	substrate	(2d).	See	Acknowledgements	for	credits	and	permissions 
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

(a) (b) (c)

(a) (b) (c) (d)

www.wileyonlinelibrary.com


538  |    Journal of Animal Ecology WEINSTEIN

>95%	 accuracy	 in	 detecting	African	 	elephants	 (Loxodonta cyclotis)	 by	
building	a	colour	model	from	training	data.	State-	of-	the-	art	approaches	
(Ren	et	al.,	2013;	Zhang	et	al.,	2016)	can	both	identify	images	of	interest,	
as	well	as	define	where	within	an	image	an	animal	occurs.	This	is	a	crucial	
first	step	in	cropping	photos	to	analyse	species	identity	(see	below).

New	 computer	 vision	 tools	 have	 opened	 new	 avenues	 for	 image	
data	collection.	Automated	count	data	have	been	taken	from	time-	lapse	
video	 (Steen	&	Ski,	 2014),	 camera	 traps	 (Matuska,	Hudec,	Kamencay,	
Benco,	&	Zachariasova,	2014),	uploaded	by	citizen	scientists	 (Kosmala	
et	al.,	2016)	and	captured	from	airborne	sensors	(van	Andel	et	al.,	2015).	
In	 particular,	 automated	detection	 algorithms	 are	 increasingly	 used	 to	
find	 large	 animals	within	 remotely	 sensed	 imagery	 captured	 by	 high-	
resolution	commercial	 satellites	 (Barber-	Meyer,	Kooyman,	&	Ponganis,	
2007)	and	unmanned	aerial	vehicles	(Hodgson,	Kelly,	&	Peel,	2013;	Liu,	
Chen,	&	Wen,	2015;	van	Andel	 et	al.,	 2015).	Commercial	 satellite	 im-
agery	offers	wide	spatial	coverage	at	sub-	metre	 resolution,	but	 is	 lim-
ited	 by	 atmospheric	 conditions,	 temporal	 coverage	 and	 high	 cost.	 To	
find	animals	within	this	imagery,	studies	have	used	pixel-	based	analysis	
(Fretwell,	Staniland,	&	Forcada,	2014),	 image	differencing	(LaRue	et	al.,	
2015)	and	supervised	classification	using	machine	learning	(Yang	et	al.,	
2014).	Several	applications	focus	on	aggregations	of	individuals	in	colo-
nial	breeding	sites	due	to	their	large	spatial	size	and	distinct	visual	signa-
ture	on	the	surrounding	environment	(Barber-	Meyer	et	al.,	2007;	Lynch,	
White,	Black,	&	Naveen,	2012).	While	results	from	Southern	right	whales	
(Eubalaena australis)	(Fretwell	et	al.,	2014),	polar	bears	(Ursus maritimus)	
(LaRue	et	al.,	2015),	and	savanna	ungulates	(Yang	et	al.,	2014)	highlight	
the	promise	of	 this	 technology,	considerable	automation	 is	needed	 to	

reduce	 the	 laborious	 hand	validation	 of	 images	 at	 scale	 (LaRue	 et	al.,	
2016).

In	comparison	 to	 satellite-	based	 imagery,	unmanned	aerial	vehicles	
have	the	advantages	of	greater	temporal	flexibility	and	low	cost	(Seymour,	
Dale,	Hammill,	Halpin,	&	Johnston,	2017).	The	trade-	off	is	the	decreased	
spatial	 extent	 limited	 by	 flight	 time	 and	 legal	 restrictions	 (Crutsinger,	
Short,	&	Sollenberger,	2016).	UAVs	have	been	successfully	used	to	count	
waterbird	populations,	due	to	the	birds’	open	habitat	and	colonial	breed-
ing	strategy	 (Descamps,	Béchet,	Descombes,	Arnaud,	&	Zerubia,	2011;	
Groom,	 Krag	 Petersen,	 Anderson,	 &	 Fox,	 2011).	 Chabot	 and	 Francis	
(2016)	reported	that	automated	counts	of	waterbirds	were	within	3%–5%	
of	human	counts	across	16	applications.	Recent	improvements	of	UAV-	
based	counting	include	utilizing	hyperspectral	data	(Beijboom	et	al.,	2016;	
Witharana	&	Lynch,	2016),	pixel-	shape	modelling	 (Liu	et	al.,	2015)	and	
combining	background	subtraction	with	machine	learning	(Torney	et	al.,	
2016)	(Figure	4b).	Recent	efforts	to	count	animals	use	deep	learning	neu-
ral	networks	are	promising,	but	require	tens	of	thousands	of	training	im-
ages	gathered	by	human	annotation	(Bowley	et	al.,	2017).

4.1 | Case study: Counting hummingbird–plant 
interactions using background subtraction

To	predict	 the	rules	 that	determine	the	 interactions	among	species,	
ecologists	often	use	the	frequency	of	interactions	as	a	proxy	for	fit-
ness	 effects	 (Bartomeus	 et	al.,	 2016).	 To	 determine	 the	 number	 of	
visits	between	birds	and	flowers,	Weinstein	and	Graham	(2017)	used	
time-	lapse	 cameras	 to	 film	multiple	 days	 of	 flower	 visitation.	Using	

F IGURE  4 Applications	of	computer	vision	to	detecting	and	counting	ecological	objects.	(a)	Background	subtraction	of	video	frames	yields	
the	desired	motion	object	(Weinstein,	2015)	based	on	changes	in	past	pixel	values.	(b)	Counting	wildebeest	from	imagery	captured	by	unmanned	
aerial	vehicle	in	Tanzania	(Torney	et	al.,	2016).	The	left	panel	are	correct	identifications	of	wildebeest,	the	right	panel	are	false	positives	caused	
by	a	flock	of	juvenile	ostrich.	See	Acknowledgements	for	credits	and	permission	[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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background	 subtraction	 algorithms,	 they	were	 able	 to	 process	 over	
8,000	hr	 of	 hummingbird	 visitation	 videos	 (Weinstein,	 2015).	 This	
video-	based	 strategy	 allowed	 sampling	 at	 much	 greater	 temporal	
extents,	 and	 therefore	minimized	 the	potential	 for	overlooking	 rare	
interactions.	From	these	data,	the	authors	modelled	species	interac-
tions	based	on	morphological	similarity	and	flower	abundance	to	test	
predictions	of	optimal	foraging	theory	(Weinstein	&	Graham,	2017).

5  | IDENTITY

Ecologists	often	need	to	inventory	the	diversity	of	taxa	or	the	number	
of	individuals	of	a	given	species	in	a	geographic	area.	The	strong	re-
lationship	between	sampling	duration	and	observed	species	richness	
means	 that	 data	 collection	 can	 often	 be	 expensive	 and	 logistically	

challenging.	Image-	based	animal	classification	has	the	potential	to	re-
duce	costs,	allow	greater	geographic	coverage	and	cause	less	distur-
bance	to	potentially	sensitive	ecosystems.

For	 individual-	level	 identification,	 computer	vision	 algorithms	 use	
images	of	known	individuals	to	match	new	images	based	on	the	similar-
ity	of	phenotypic	patterns	(Figure	5a).	By	matching	the	image	features	
among	images,	matching	algorithms	score	the	 likelihood	that	two	im-
ages	are	of	the	same	individual.	For	animals	with	unique	markings,	this	
can	be	a	 low-	cost	alternative	 to	expensive	 trapping	and	 tagging	pro-
grams.	This	approach	was	pioneered	for	fluke	 identification	 in	marine	
mammals	 (Adams,	Speakman,	Zolman,	&	Schwacke,	2006;	Beekmans,	
Whitehead,	 Huele,	 Steiner,	 &	 Steenbeek,	 2005;	 Gilman,	 Hupman,	
Stockin,	&	Pawley,	2016)	and	has	since	been	applied	on	a	wide	range	of	
taxa,	from	zebras	(Equus grevyi)	(Crall,	Stewart,	Berger-	Wolf,	Rubenstein,	
&	 Sundaresan,	 2013),	 to	 elephants	 (L. cyclotis)	 (Ardovini,	 Cinque,	 &	

F IGURE  5 Application	of	computer	vision	to	predicting	individual	and	species	identity:	(a)	Matching	algorithms	score	the	similarity	of	
photographed	zebras	to	a	library	of	known	images	to	track	individuals	over	time	(Crall	et	al.	2013).	(b)	From	Marburg	and	Bigham	(2016),	a	deep	
learning	classifier	is	trained	on	a	starfish	species	class	based	on	training	data	of	labelled	images.	The	classifier	is	then	used	to	predict	testing	data	
to	evaluate	the	accuracy	of	the	approach.	In	this	example,	the	training	and	testing	data	are	separate	objects	within	the	same	image	frame	based	
on	bounding	boxes	that	distinguish	animals	from	the	image	background.	See	Acknowledgements	for	image	credits	and	permissions	[Colour	
figure	can	be	viewed	at	wileyonlinelibrary.com]
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Sangineto,	 2008),	 and	 box	 turtles	 (Terrapene carolina)	 (Cross,	 Lipps,	
Sapak,	Tobin,	&	Root,	2014).	These	methods	are	effective	in	identifying	
animals	with	complex	markings,	such	as	giraffes	(Giraffa camelopardalis)	
(Bolger,	Morrison,	Vance,	Lee,	&	Farid,	2012),	whale	sharks	(Rhincodon 
typus)	(Arzoumanian	et	al.,	2005)	and	catfish	(Rineloricaria aequalicuspis)	
(Dala-	Corte,	Moschetta,	&	Becker,	2016),	and	 range	 from	completely	
automated	(Town,	Marshall,	&	Sethasathien,	2013),	to	involving	human	
feedback	 during	matching	 (Duyck	 et	al.,	 2015).	 Crall	 et	al.	 (2013)	 re-
ported	accuracy	rates	ranging	from	95%	for	Grey’s	zebras	(E. grevyi)	to	
100%	for	jaguars	(Panthera onca)	using	the	HotSpotter	algorithm,	which	
can	be	accessed	through	the	Wildbook	web	platform.

Automated	species	identification	is	rapidly	developing	field	with	an	ex-
plosion	of	new	approaches	and	promising	results	(Figure	5b).	While	initial	
attempts	focused	on	traditional	machine	learning	with	an	a	priori	division	
of	image	features	(e.g.	Blanc,	Lingrand,	&	Precioso,	2014;	Lytle	et	al.,	2010),	
the	 accuracy	 of	 these	 approaches	was	 generally	 low	 (>70%).	However,	
recent	advances	using	new	deep	learning	models	have	greatly	improved	
model	 performance	 across	 a	 wide	 variety	 of	 animal	 taxa,	 from	 coral	
(Beijboom	et	al.,	2016)	to	 large	mammals	 (Gomez,	Diez,	Salazar,	&	Diaz,	
2016)	 (Table	2).	The	majority	of	applications	 I	 reviewed	had	a	particular	
geographic	focus,	for	example	the	rodent	community	of	the	Mojave	des-
ert	(Wilber	et	al.,	2013).	The	next	stage	is	a	general	test	of	machine	learn-
ing	models	across	systems	to	find	the	optimal	number	of	training	images,	
model	parameters	and	the	required	spectral	diversity	of	potential	classes	
that	leads	to	increased	predictive	performance	(Van	Horn	et	al.,	2015).

5.1 | Case study: Merlin, a bird identification app 
powered by deep learning neural networks

The	 Merlin	 project	 demonstrates	 the	 potential	 for	 revolutionary	
change	in	ecological	identification	(Farnsworth	et	al.,	2013).	Merlin	

is	 the	 joint	 project	 from	 Visipedia	 and	 the	 Cornell	 Laboratory	 of	
Ornithology	 to	 identify	600	common	North	American	bird	species	
(Van	Horn	et	al.,	2015).	The	 identification	algorithm	uses	Google’s	
TensorFlow	deep	 learning	platform,	as	well	as	citizen	science	data	
from	eBird	to	generate	potential	species	lists	given	a	user’s	location	
(Branson	et	al.,	2010).	While	Merlin	is	primarily	geared	towards	citi-
zen	scientists,	pairing	this	technology	with	the	growing	number	of	
publically	accessible	photos	(e.g.	iNaturalist.org)	promises	to	bolster	
observations	of	rare	and	cryptic	species	for	biodiversity	monitoring.

6  | COLLABORATION WITH COMPUTER 
VISION RESEARCHERS

The	combination	of	high-	quality	data,	applied	use	cases	and	interesting	
problems	will	lead	to	productive	collaborations	among	ecologists	and	
computer	vision	researchers.	While	computer	vision	tools	are	becom-
ing	more	accessible	to	ecologists,	state-	of-	the-	art	solutions	will	benefit	
from	collaboration	with	the	computer	vision	community.	Finding	and	
maintaining	these	collaborations	can	be	difficult	given	the	difference	in	
terminology	and	aims	of	ecologists	vs.	computer	science	researchers.	
I	suggest	highlighting	three	areas	of	potential	mutual	interest:

1. Ecology	 has	 intriguing	 and	 challenging	 technical	 problems.	 The	
natural	 world	 is	 complex	 and	 heterogeneous.	 Changes	 in	 illu-
mination	 and	 backgrounds	 make	 animal	 detection	 difficult.	
Changes	 in	 organism	 appearance	 and	 shape	 are	 challenging	 for	
classification	 algorithms.	 Ecologists	 should	 emphasize	 the	 gen-
erality	 of	 their	 proposed	 problem,	 and	 frame	 collaborations	 as	
a	 potential	 area	 for	 development	 of	 new	 algorithms,	 rather	
than	 as	 an	 applied	 example.

Reference
Training 
images Taxa

Species or 
classes

Average 
accuracy (%)

Wilber	et	al.	(2013) 5,362 Mammals,	Reptiles 7 76.4

Yu	et	al.	(2013) 22,533 Mammals 18 83.8

Chen,	Han,	He,	Kays,	&	
Forrester	(2014)

9,530 Rainforest	
Mammals

19 38.3

Hernández-Serna	et	al.	
(2014)

1,800 Fish,	Butterflies 32 92.87

92 11 93.25

Atanbori	et	al.	(2016) – Birds 7 89.0

Berg	et	al.	(2014) Avg.	of	200	
per	species

Birds 500 66.6

Beijboom	et	al.	(2016) 28,400 Coral 10 88.9

Marburg	&	Bigham	(2016) 8,586 Benthic	inverte-
brates	and	fish

10 89.0

Gomez	et	al.	(2016) 14,346 Savanna	animals 26 88.9

Qin,	Li,	Liang,	Peng,	&	
Zhang	(2016)

22,370 Fish 23 98.6

Villon	et	al.	(2016) 1,400 Fish 8 65.8

Sun	et	al.	(2017) 9,160 Fish 15 77.27

Feng	et	al.	(2016) 4,530 Moths 50 53.12

TABLE  2 Evaluation	statistics	for	recent	
computer	vision	applications	to	predicting	
species-	level	identity.	Articles	shown	only	
include	applications	to	more	than	five	
species	and	quantified	the	classification	
accuracy	using	a	testing	dataset.	Accuracy	
is	only	reported	for	the	best	performing	
model	in	each	paper.	Articles	are	ordered	
by	publication	date
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2. Ecologists	 can	 improve	computer	vision	algorithms	by	providing	
biological	 context	 (Berg	 et	al.,	 2014).	 Ecological	 rules	 that	 may	
seem	to	be	common	sense,	such	as	“there	should	not	be	fish	on	
land,”	require	neural	networks	to	identify	both	objects	in	an	image	
(“fish”),	scene	context	(“land”)	and	the	relationship	between	image	
features.	One	way	to	overcome	this	would	be	to	cumbersomely	
train	an	algorithm	with	thousands	of	images	of	land	without	fish.	
Ecology	provides	a	more	straightforward	and	effective	method	by	
using	image	metadata,	such	as	time	or	location,	to	assist	in	image	
classification.	For	example,	combining	image	location	with	expert	
vetted	species	regional	checklists	might	show	that	only	a	few	spe-
cies	 with	 a	 given	 coloration	 occur	 in	 given	 location.	 Similarly,	
image	context	can	assist	future	predictions.	For	example,	if	an	al-
gorithm	identifies	a	wildebeest	in	an	aerial	image,	it	may	be	more	
likely	to	also	find	zebras	(Swanson	et	al.,	2015).	Finally,	ecological	
context	can	reduce	the	burden	of	gathering	training	data	by	ex-
ploiting	the	inherent	conservation	of	body	plans	among	animals	to	
create	hierarchical	labels.	Rather	than	thinking	of	all	potential	in-
dividual	categories	(e.g.	black	bear,	grizzly	bear,	polar	bear,	etc.),	
hierarchical	 labelling	exploits	 the	connections	among	animals	 to	
create	nested	categories	(e.g.	Ursus).	Tree-based	classification	ap-
proaches	have	been	effective	 in	other	areas	of	computer	vision,	

and	fits	naturally	with	the	study	of	evolutionary	taxonomy	(Favret	
&	Sieracki,	2016).

3. Ecologists	are	collecting	vast	amounts	of	labelled	data.	Computer	
vision	 applications,	 and	 especially	 deep	 learning	 approaches,	 re-
quire	 significant	 training	 and	 testing	 data.	 High-quality	 datasets	
are	difficult	to	find,	and	a	lack	of	labelled	data	is	a	major	obstacle	in	
computer	 vision	 research	 (Belongie	&	Perona,	 2016;	Berg	 et	al.,	
2010;	Gomez	et	al.,	2016).	Packaging	image	datasets	and	making	
them	publicly	available	will	 raise	awareness	of	 the	opportunities	
for	ecological	collaboration.

7  | FUTURE GROWTH

The	future	of	ecological	computer	vision	will	combine	new	algorithms,	
data	 and	 collaborations	 to	 study	 animals	 in	 natural	 environments.	
The	 rise	 of	 neural	 networks	 as	 the	 central	 tool	 in	 image	 classifica-
tion	(Gomez	et	al.,	2016;	LeCun	et	al.,	2015),	background	subtraction	
(Christiansen	et	al.,	2016)	and	image	description	(Mohanty,	Hughes,	
&	Salathé,	2016)	 is	 a	key	development	 that	with	bring	new	oppor-
tunities	for	ecological	computer	vision	(Figure	6).	Until	recently,	the	
growth	of	these	tools	has	been	slowed	by	a	lack	of	access	to	cutting	

F IGURE  6 Overview	of	a	neural	network	for	machine	learning	prediction:	(a)	Pixel	convolutions	create	combinations	of	input	predictors	
by	down	sampling	and	pooling	image	features,	(b)	a	generic	deep	learning	structure,	input	data	passes	through	hidden	layers,	called	nodes,	to	
create	pathways	from	predictors	to	prediction.	The	activation	score	at	each	of	these	nodes	is	used	to	estimate	model	weights.	In	current	deep	
learning	applications,	there	will	be	many	hidden	layers	of	nodes	to	create	combinations	of	input	predictors	[Colour	figure	can	be	viewed	at	
wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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edge	algorithms.	The	recent	unveiling	of	the	Google	Cloud	Machine	
Learning	platform	could	be	a	quantum	leap	in	access	for	ecologists.	
Released	in	2016,	Google	gives	users	access	to	a	web	service	to	retrain	
models	using	Google’s	popular	TensorFlow	software.	TensorFlow	is	a	
computational	graph	algorithm	that	represents	mathematical	opera-
tions	as	nodes	and	stores	data	in	multidimensional	arrays.	Rather	than	
building	a	model	from	scratch	for	each	application,	users	can	retrain	
pre-	built	models	to	add	new	image	classes.	Known	as	transfer	learn-
ing,	this	approach	uses	the	strengths	of	the	underlying	architecture,	
but	adds	flexibility	for	specialized	problems.	This	greatly	reduces	the	
time	and	expertise	needed	to	implement	image	analysis	solutions.

A	persistent	challenge	in	computer	vision	applications	is	collecting	
sufficient	labelled	data	(Berg	et	al.,	2010).	New	data	collection	oppor-
tunities	 through	 data	mining	 (Zhang,	 Korayem,	 Crandall,	 &	 Lebuhn,	
2012)	and	citizen	scientists	will	broaden	the	potential	sources	of	 la-
belled	 ecological	 data	 (Swanson,	 Kosmala,	 Lintott,	 &	 Packer,	 2016).	
The	natural	excitement	 for	plants	and	animals	means	that	gathering	
further	labelled	data	is	possible	through	online	citizen	scientist	efforts	
(Van	Horn	et	al.,	2015).	In	particular,	projects	on	the	Zooniverse,	iNat-
uralist	and	Wildlife	@home	web	platforms	provide	a	way	of	engaging	
important	user	communities	(Desell	et	al.,	2013;	Kosmala	et	al.,	2016).	
The	next	step	is	integrating	citizen	scientists	as	a	part	of	greater	au-
tomation,	 rather	as	an	alternative	 to	automation.	Known	as	 “human	
in	 loop”	approaches,	this	strategy	can	 learn	directly	from	human	an-
notations	 to	 provide	 feedback	 and	 recommendation	 for	 future	 data	
labelling	(Branson	et	al.,	2010;	Reda,	Mateevitsi,	&	Offord,	2013).	This	
will	combine	the	expertise	and	excitement	from	citizen	scientists,	with	
the	greater	standardization	of	automation.
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