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Objective

Evaluate novel techniques for building a tobacco retailer
dataset.

 Web-scraping tobacco retailer locations.
* Machine learning to predict characteristics of retailers.

|  Amazon Mechanical Turk as an inexpensive and accurate
| There is no national database of tobacco ‘ method to cross-validate data.

retailers.
* Only 37 states require licenses to sell tobacco.

» Tobacco products consist of 36% of sales revenue Method Overview
in convenience stores.

* There are weak incentives to obtain proper Cross-Validation
licensing

Introduction

location is important.

* Youth are more likely to begin smoking in areas
with lots of tobacco retailers. Classification

- The density of tobacco retailers correlates with Scraping |
many indicators of social disadvantage, including
lack of healthcare.

» Regulations are often under enforced.

' But having the knowledge of tobacco retailers’ E——f_?-'.'-‘"""f"'."‘-x Data
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Web Scraping

In order to efficiently obtain a list of
tobacco retailers, we looked to scrape
data from webpages.

Used R to code an automated web
crawler that parses HTML script

 Collected basic store information from
Yellow Pages such as the store name,
address, and phone number
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Machine Learning

Our aggregated dataset contains many retailers.

But not all may actually sell tobacco products. The next step was
predicting such characteristics of a store.

« Tokenized store names by breaking them down into n-grams.
Calculated a modified version of the term frequency-inverse
document frequency (tf-idf) score for each n-gram within each
category.

« Used |enks Natural Breaks to cluster tokens with similar scores
together, and to determine which tokens were the best predictors for
a store being in each category.

* Modeled a decision tree through R, where are training set was 70% of
our data and our test set the other 30%.
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Results

» Aggregated 15,502 unique retailers in North Carolina,
and 266 unique retailers in Durham County through
web-scraping.

* Found that all 266 retailers matched the dataset of a
community partner.

* Created and trained a decision tree using 19,619
retailers that were not in North Carolina, to predict the
store types of 363 North Carolina retailers with an
accuracy of 85.15%.

% accurately coded by text-mining machine learning methods

n stores

Alcohol 384

j‘é Convenience 2,818

I 2 Drug 239 82% 14%
£ Grocery 600 | 1% 49% 3% |3% | 4%
S Hookah 2 50%
& Mass Merch. 395 1% 88% | 1%
% None 1,020 13% |57% | 2% |4% 3% |26% | 6%
= Other 384 | 2% | 47% 3% 3% | 28% |18%
':,E, Tobacco 138 | 1% | 43% 50% | 6%
g Vape 15 27% -

Conclusion

* Web-scraping is the most effective method of data

collection

* Machine learning with text mining is a relatively
precise method for classification.

M Turk is cost-effective for human cross-validation. It
only costs $1.25 to validate a retailer.
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