
Open Data for Tobacco Retail Mapping

Introduction

There is no national database of tobacco 
retailers.
• Only 37 states require licenses to sell tobacco.
• Tobacco products consist of 36% of sales revenue 

in convenience stores. 
• There are weak incentives to obtain proper 

licensing

But having the knowledge of tobacco retailers’ 
location is important.
• Youth are more likely to begin smoking in areas 

with lots of tobacco retailers. 
• The density of tobacco retailers correlates with 

many indicators of social disadvantage, including 
lack of healthcare. 
• Regulations are often under enforced.

Objective

Evaluate novel techniques for building a tobacco retailer 
dataset.
• Web-scraping tobacco retailer locations.
• Machine learning to predict characteristics of retailers. 
• Amazon Mechanical Turk as an inexpensive and accurate 

method to cross-validate data. 
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Web Scraping

In order to efficiently obtain a list of
tobacco retailers, we looked to scrape
data from webpages.

Used R to code an automated web
crawler that parses HTML script 
• Collected basic store information from

Yellow Pages such as the store name,
address, and phone number
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Machine Learning 

Our aggregated dataset contains many retailers.
But not all may actually sell tobacco products. The next step was 
predicting such characteristics of a store.

• Tokenized store names by breaking them down into n-grams. 
Calculated a modified version of the term frequency–inverse 
document frequency (tf-idf) score for each n-gram within each 
category. 

• Used Jenks Natural Breaks to cluster tokens with similar scores 
together, and to determine which tokens were the best predictors for 
a store being in each category.

• Modeled a decision tree through R, where are training set was 70% of 
our data and our test set the other 30%. 
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Results

• Aggregated 15,502 unique retailers in North Carolina, 
and 266 unique retailers in Durham County through 
web-scraping. 
• Found that all 266 retailers matched the dataset of a 

community partner. 
• Created and trained a decision tree using 19,619

retailers that were not in North Carolina, to predict the 
store types of 363 North Carolina retailers with an 
accuracy of 85.15%.

Conclusion

• Web-scraping is the most effective method of data 
collection
• Machine learning with text mining is a relatively 

precise method for classification. 
• M Turk is cost-effective for human cross-validation. It 

only costs $1.25 to validate a retailer.


