## Speech Emotion Analysis

**Researchers:** 

Ryan Culhane | rpc21@duke.edu Reza Soleimani | rs508@duke.edu Andre Wang | jw542@duke.edu Michael Xue | myx2@duke.edu

**Project Leads:** 

Dr. Vahid Tarokh, Duke University Dr. Jie Ding, University of Minnesota

**Project Manager:** 

Enmao Diao, Duke University





### Background

From the Google Assistant to Amazon Alexa, the ways humans engage with machines have changed drastically in the past few years. An intriguing next step in making such human-machine interactions more natural is integrating emotion.

### **Objectives**

1. **Speech Emotion Recognition (SER)**: recognize emotion from an utterance



2. **Text-to-Speech Synthesis (TTS):** integrate emotion into speech generated from text



# **Proposed Models**

#### **Speech Emotion Recognition**



From a given utterance, we create a handcrafted input by splitting it into equal-length segments and extracting handcrafted features from each segment. We also construct spectrograms with two different frequency resolutions and pass them through a CNN in order to learn features. Each of these inputs are passed through an LSTM, followed by a linear layer. Finally, the outputs are added to classify the emotion. We find that combining handcrafted and learned features raises classification accuracy considerably.

#### Text-to-Speech Synthesis



In the latent model, a variational encoder allows us to learn the latent spaces of emotions. When samples from the latent space are input into the decoder of the original Tacotron 2 model, which is able to convert text to speech, we are able to incorporate emotion into generated speech.

## **Experimental Results**



#### **Speech Emotion Recognition**

| Model                | WA    | UA    |
|----------------------|-------|-------|
| D. Dai et al. (2019) | 65.4% | 66.9% |
| S. Mao et al. (2019) | 65.9% | 66.9% |
| R. Li et al. (2019)  | -     | 67.4% |
| Proposed model       | 69.9% | 70.5% |



accuracy

The IEMOCAP database contains over 12 hours of improvised and scripted speech from professional actors. We trained our recognition model on utterances from four, roughly balanced emotions: neutral, happy, angry, and sad.

### Text-to-Speech Synthesis

Scan to listen to examples of synthesized speech, or visit: *https://rpc21.github.io/data-plus-results/* 

