Comparing the Exploration of Academic Majors at Duke

Ben Chesnut, Katharyn Loweth, Fred Xu

<u>Project Manager:</u> Zhennan Zhou

<u>Faculty Mentors</u>: Jonathan Mattingly David Toole

Background:

Although Duke undergraduate students are lauded by the administration as being interdisciplinary, little research has been completed on the academic pathways that students take while at Duke.

- Duke MATH
- Duke GLOBAL HEALTH

Contact Information:

Ben Chesnut: benchesnut95@gmail.com Katharyn Loweth: katharyn.loweth@duke.edu Fred Xu: fredxu2015@gmail.com

Goals:

- Better understand the academic paths and choices Duke students make
- Use insights to propose improvements to the Global Health and Math department curriculums
- Use visualization methods to create interactive models that accurately and intuitively display the academic and demographic data

Acknowledgements:

- Software used: MySQL, Python, R, Tableau
- Packages used: matplotlib, numpy, scikit-learn
- People: Paul Aspinwall, Laura Bey, Leslie Saper, Paul Bendich, Ashlee Valente, Ariel Dawn, Kathy Peterson

Math Department

Common Course Trajectories

 Duke students clustered into different groups based on math courses taken

Method

- Hierarchical clustering
 - Metric: Minimum distance pairing of two students' courses based on hierarchy of level and topic

Analysis

Math students clustered into six groups:

Cluster	Typical Courses (>30% enrollment)	# of Students
1	212, 221, 230, 342, 356, 401, 431, 581	122
2	212, 221, 230, 342, 356, 401, 431, 487	195
3	212, 221, 230, 281, 305, 333, 356, 411, 421, 431, 493, 501, 531	45
4	212, 221, 230, 281, 356, 411, 481, 493, 501, 502, 531, 532, 602, 603, 611, 612, 621, 631, 633	32
5	111 (old), 114 (old), 212, 216, 230, 342, 353, 401, 431	48
6	221, 230, 342, 356, 371, 375, 401, 431	45

The x-axis represents the percentage of people in Cluster 1 who have taken a particular class. The y-axis represents the percentage of people in a particular course who are in Cluster 1.

Global Health (GH) Department

Major/Minor Analysis

- What are the differences between majors and minors?
- Can we distinguish minors who wanted to be majors?

Methods

- <u>Feature Selection</u> of features that most separate GH majors and minors (Fig. 1)
- <u>Hierarchical Clustering</u> of GH minors using selected features
 - Minors with strong "major" characteristics ("Major to Minor")
 - Minors with low "major" characteristics ("Minor")

Analysis

- Minors who wanted to be majors tend to take more classes than other minors. (Fig. 2)
- Comparing first majors suggests some (e.g. ICS) are easier to pair with the GH major than others (e.g. Neuroscience) (Fig. 3)

Fig. 3: First majors and percent of students who officially majored/minored out of all students who attempted to major

<u>Fig. 2</u>: Boxplots showing GH course count distributions for majors, major to minors, and minors.