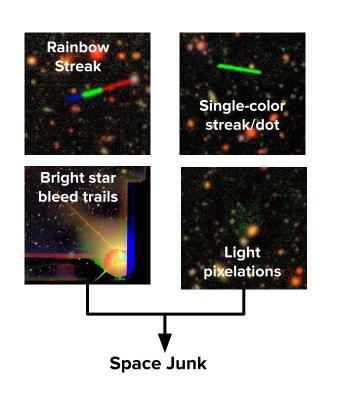


Finding Space Junk with the World's Biggest Telescopes

Rebecca Bell, Pavani Jairam, Jiayue Xu

What is Space Junk?

Astronomers use images of deep space to study the universe. These images are polluted with "space junk" that obstructs their view.

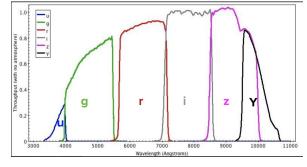


Data: The Dark Energy Survey

DES Data

- International effort to map galaxies, detect supernovae, and reveal patterns of dark energy
- 6 deep fields, 363 4200x2200 images

Each image consists of 6 bands

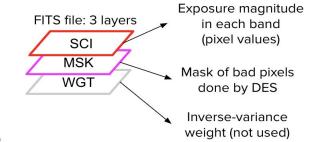


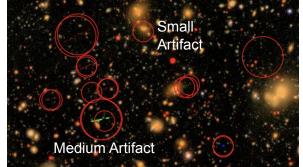
Manual Mask Data

- Artifact location identified by volunteers
- 231 images contain small and medium masks

Approach 1:

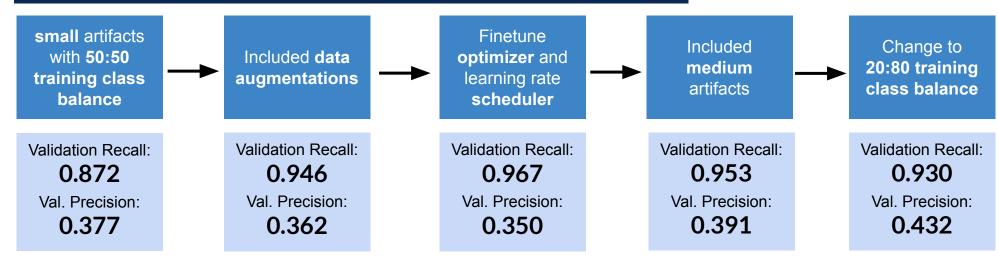
Each band stored in FITS file

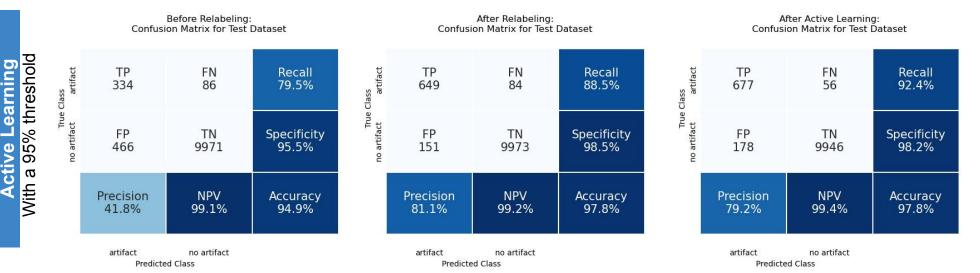




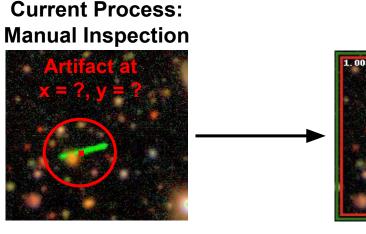
Each circle mask centered at x,y coordinates of artifacts

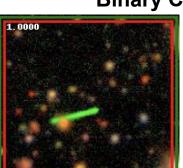
Binary Classification: Methods & Results



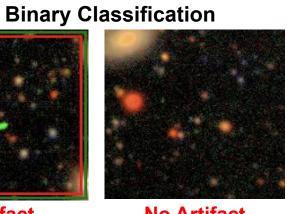


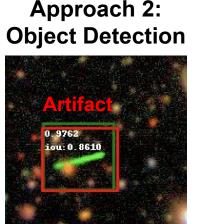
Deep Convolutional Models to Find Space Junk





Artifact



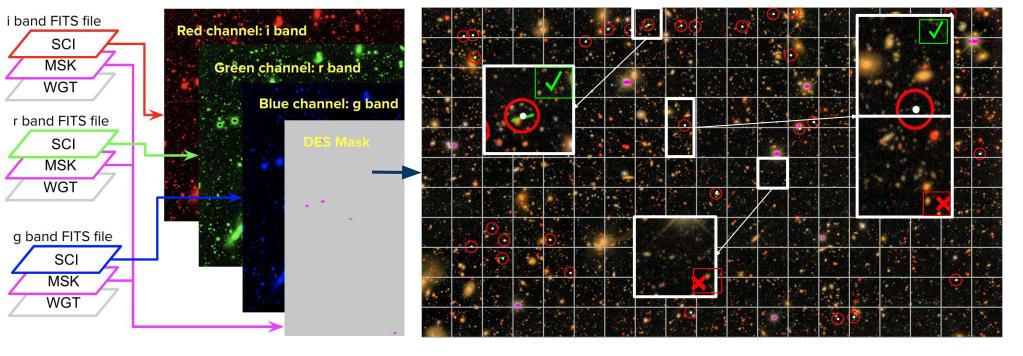


No Artifact

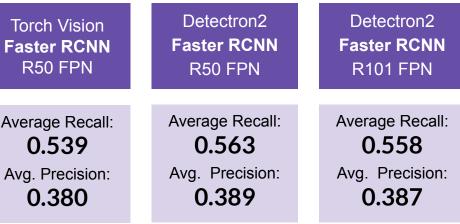
Manually detecting space junk is time consuming, inefficient, and leaves room for human error. Our mission was to build an algorithm that would automate this detection process.

Data Pre-Processing

- To transform FITS files into JPEGs, we extracted the SCI layer of the i, r, g-bands and mapped them to red, green, and blue channels. Then, each of the MSK layers are combined into a single array, which, when applied to the RGB array, shows magenta colored masks.
- We located the artifacts using x,y coordinates. After dividing the image into tiles (200x200 for classification, 600x600 for detection), we classified each by the percentage of tile that is masked.



Object Detection: Methods & Results



Binary Classification

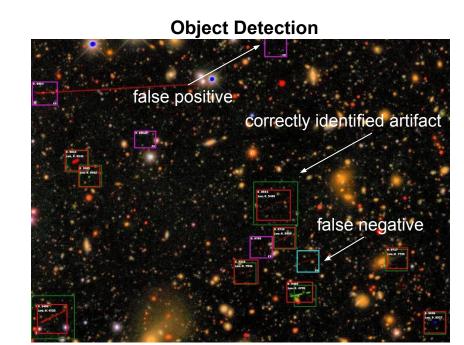
Detectron2 **Faster RCNN** X101 FPN Average Recall: 0.575 Avg. Precision: 0.407

Detectron2 Retinanet R50 FPN Average Recall: 0.582 Avg. Precision: 0.391

Detectron2 Retinanet R101 FPN Average Recall: 0.602 Avg. Precision: 0.399

Comparison of Results

correctly identified



When the results of our two models are stitched together, they generate the full-sized images above.

Next Steps

false negative

We plan on continuing our work into the semester. We hope to extend our models into all 6 channels, apply active learning to object detection, fine tune, and package the software for DES researchers.

Acknowledgements

We would like to thank our project manager Kevin Liang, and project leads Prof. Michael Troxel, Prof. Daniel Scolnic, Prof. Christopher Walter, and Bruno Sanchez for their support.