
Duke University
Department of Mathematics

Platypus - Cradle Removal Matlab code Manual

Developer:
Rujie (Rachel) Yin

June 2015

i

Preface

The digital cradle removal project is one of the art-related projects, originally proposed by
my advisor Prof. Ingrid Daubechies, in which I am involved. These projects aim at inter-
disciplinary collaboration between STEM (science, technology, engineering, mathematics)
and humanities, in particular, Mathematics, Electrical Engineering and Art History.

I am glad to receive encouragement not only from my advisor and colleagues, but also
from many art conservators whom I collaborate with. I hope my work can assist them to
discover more and learn more in art conservation.

The Matlab code I wrote within the past two years is a prototype of my proposed algo-
rithms in the following two papers, Digital Cradle Removal in X-ray Images of Art Paintings
(presented at ICIP 2014) and Removing cradle artifacts in X-ray images of paintings (SIAM
preprint). The first conference paper provides a nice overview of the basic algorithm and
the second journal paper includes more details and an extension of the previous algorithm.

The potential reader of this manual is expected to be from STEM and wishes to further
develop my algorithm in Matlab as a prototype. For those who are looking for deployed
C code, please refer to the C code written by Gabor Fodor, who spent tremendous effort
translating my Matlab code and making improvement for practical application. For art
conservators who are end users looking for the cradle removal tool, please download the
Photoshop plugin Platypus and try it out on your own X-rays!

The Matlab code is free to download and is meant for academic research ONLY. However,
users are responsible for any consequential damages from using the code. No commercial
usage is permitted.

Rujie (Rachel) Yin
Durham

June 2015

Contents

List of Figures iii

1 Overview 1
1.1 Background . 1
1.2 Algorithm Pipeline . 2
1.3 Input Demo . 3

2 Cradle Detection and Intensity Adjustment 4
2.1 Load image . 4
2.2 Initial cradle location estimation . 4
2.3 Remove horizontal (sliding) cradle artifact 6
2.4 Remove vertical (fixed) cradle artifact . 9
2.5 Remove intersection of cradle members . 11
2.6 Post-processing (optional): remove boundary artifacts 12

3 Cradle Texture Removal 14
3.1 Texture extraction . 14
3.2 Texture separation I: compute feature vector 17
3.3 Texture separation II: Bayesian factor model 18

ii

List of Figures

1.1 A typical cradle structure on the back of a panel painting 1
1.2 Pipeline of cradle removal algorithm . 2
1.3 Cropped patch from X-ray of Ghissi altarpiece, Acteus and Eugenius Implore St.

John the Evangelist to Restore Their Wealth, North Carolina Museum of Art . 3

2.1 Cradle detection and intensity adjustment work flow. 5
2.2 Decision tree for model selection . 7
2.3 Left: hinfo output diagram; Right: imgnew using multiplicative model 8
2.4 Left: vinfo output diagram; Right: I using multiplicative model 10
2.5 Left: crossinfo output diagram; Right: Inew using multiplicative model . . . 12
2.6 Left: Inew, stage 1 result with boundary artifact along the cutting edges of the

vertical cradle member; Right: post-processing result. 13

3.1 Texture extraction and separation work flow. 15
3.2 subimg image blocks of stage 1 result. 16
3.3 MCA decomposition of subimg. Left: texture; Right: cartoon. 16
3.4 Bayesian factor model result. Top left: cradle texture result, top right: residual

texture residual, bottom left: texture, bottom middle: texture - result,
bottom right: texture - result - residual. 20

3.5 Sampling strategy for cradle (green) and non-cradle (red) feature vectors. . . . 21

iii

Chapter 1

Overview

This chapter gives an overview of the cradle removal algorithm, introducing key functions
and variables that are used in the process.

1.1 Background

In this section, we introduce briefly the background of the digital cradle removal problem.
Fig.1.1 shows a typical cradle structure attached to the back of a panel painting. There
are two types of cradling members: fixed versus sliding. The difference between these two
types of cradling members is significant in an X-ray image. The fixed member shows up as
an entire piece without any slots in between, whereas the sliding member shows up as an
array of segments aligned perpendicular to the fixed member, often with dark slots at the
intersections. This is because tunnels are cut in the fixed members allowing sliding ones go
through, see Fig.1.1. Moreover, the wood grain of fixed members is always aligned in the
same direction as that of the wood panel. In general, sliding members show up in horizontal
direction and fixed members show up in vertical direction, which is also the convention used
in this manual.

Figure 1.1: A typical cradle structure on the back of a panel painting

1

1.2. Algorithm Pipeline

Figure 1.2: Pipeline of cradle removal algorithm

1.2 Algorithm Pipeline

The cradle artifact in an X-ray image (input) consists of two parts: a smooth intensity
difference with rectangular shape and the wood grain (texture) coming from the cradle.
These two parts are removed successively in two stages: the cradle detection and intensity
adjustment and the cradle texture removal, as shown in the pipeline in Fig.1.2. Within
each stage, the process is further broken down into automatic/semi-automatic steps.

2

1.3. Input Demo

Figure 1.3: Cropped patch from X-ray of Ghissi altarpiece, Acteus and Eugenius Implore
St. John the Evangelist to Restore Their Wealth, North Carolina Museum of Art

1.3 Input Demo

Throughout this manual, we will use the demo image shown in Fig.1.3, which is a cropped
patch from the X-ray of Acteus and Eugenius Implore St. John the Evangelist to Restore
Their Wealth, currently in the North Carolina Museum of Art. The dimensions of the image
are 474 × 839 pixels. If you choose to remove cradle artifacts in your own X-ray image,
please make sure that it satisfies the following properties:

• There is no background on the boundary of the image.

• There are no cradle members on the boundary of the image, all cradle members appear
in full width.

• There are minimum defects in the X-ray (the impact of defects depends on the size
and the location of the defects).

• All cradle members should have a rectangular shape, curved non-polygon cradle shapes
can not be handled by the algorithm.

3

Chapter 2

Cradle Detection and Intensity
Adjustment

The first stage of the cradle detection workflow is crucial for the final result as the detected
cradle location will be used in the second stage. In some cases, where the wood grain of
cradle doesn’t appear in X-ray images, it suffices to only apply the first stage of the process.

The pipeline of the first stage is depicted in Fig.1.2 and can be further broken down into
the workflow shown in Fig.2.1.

The rest of this chapter follows the matlab script CradleRemovalMain.m, and goes
through the major functions and parameters used in the first stage.

2.1 Load image

%% load demo image
img = double(imread('../figure/rawX-ray.jpg'));
img = mean(img,3);

The image must be converted into a double grayscale image.

2.2 Initial cradle location estimation

This step is an initial automatic estimation of the location of cradle members relying on
the differences of pixel values across the edges of cradle members.

% step 1: estimate roughly the location of horizontal and vertical cradles
% basic parameters setup for cradle detection
vn = 1; % number of vertical cradles
vrange = [1 , size(img,2)]; % the range of vertical cradles, get rid of zero ...

background
hn = 1; % number of horizontal cradles
hrange = [1 , size(img,1)]; % the range of horizontal cradles, get rid of ...

zero background

4

2.2. Initial cradle location estimation

Figure 2.1: Cradle detection and intensity adjustment work flow.

opt = struct();% options
opt.L = 20;% length of Haar filter
opt.s = 5;% smoothing parameter, input of built-in function smooth
opt.display = 0;% do not display intermediate estimation result
[verest,horest] = cradledetect(img,vn,vrange,hn,hrange,opt);

Input

To estimate the location, you need to provide the number of horizontal cradle members
(hn) and the number of vertical cradle members (vn).

You may also help the algorithm by excluding unnecessary background along the bound-
ary by setting the parameters hrange, vrange.

The structure opt contains options of model settings as well as feedback from
functions when it is an output. Note: For images with finer resolution, increase opt.L,

opt.s to get better estimation.

5

2.3. Remove horizontal (sliding) cradle artifact

Output

This initial guess will treat cradle members as if they are in perfect horizontal or vertical
direction. Hence, for a horizontal cradle member, one only need to record the vertical
coordinates of two edges horest, and similarly, for a vertical cradle member, one records
the horizontal coordinates of two edges verest. See the red dashed lines in Fig.2.1.

Functions

cradledetect.m

Walkaround

If the output estimations horest, verest are completely off, you can manually set
them using the coordinates of the middle points on the edges.

2.3 Remove horizontal (sliding) cradle artifact

The horizontal (sliding) cradle members are removed first, because they are not cut and
show up as a whole piece in X-ray image. Instead of working on the full size image, the
sub patch containing each horizontal member with decent amount of surrounding region is
cropped out and used in the proces.

% step 2: estimate the accuracy of the estimation of verest & horest
opt.hs = 10;
opt.vs = 20;
opt.smoothbd = 0; % indicate if the boundary is smooth (noisy)

% step 3: remove all horizontal cradles
opt.model = 'multiplicative'; % 'additive'
opt.profile estimation = 'edge'; % 'edge' for edge profile estimation only, ...

'section' for full cross section
[imgnew,hinfo] = RmHorizontalCradle(img,horest,verest,opt);

Input

We should first let the algorithm know the accuracy of the initial guesses for horest

and verest. For example, if the vertical coordinates of the edges of a horizontal member
have differences to the corresponding estimation horest within 10 pixels, then set opt.hs

= 10.
Indicate if the edge of the cradle artifact is smooth or not. Different methods will be

used to refine the estimation of edge locations. Setting opt.smoothbd to 1 for sharp edges
in the image will leads to less accurate result.

The model used for intensity adjustment is specified by setting opt.model.
Follow the rule of thumb in Fig.2.2 to choose a proper model from ‘additive’

6

2.3. Remove horizontal (sliding) cradle artifact

and ‘multiplicative’. In general, you can first try out the ‘multiplicative’ model,
and if it doesn’t work well, then switch back to the ‘additive’ model.

Figure 2.2: Decision tree for model selection

Specify opt.profile estimation only if you use the ‘multiplicative’ model. If the
cross section of your cradle is irregular (i.e. non-rectangular), use ‘section’. Otherwise,
use ‘edge’.

Output

imgnew the result image with horizontal cradle artifact removed, see Fig.2.3.

hinfo a cell array containing information of horizontal cradle member, including

rowind, colind indices of cropped patch containing the cradle

lp,rp,ld,rd location of the four vertices (top-left, top-right, bottom-left, bottom-right) of
the polygon detected as cradled region

cradleimg cradle artifact subtracted from the image patch

angle angle of the cradle member detected using the Radon transform

dI maximum pixel value difference of cradled and non-cradled region

width width of edge neighbourhood used cradleimg, parameter of additive model

p1profile, C parameters of multiplicative model

7

2.3. Remove horizontal (sliding) cradle artifact

Figure 2.3: Left: hinfo output diagram; Right: imgnew using multiplicative model

Functions

RmHorizontalCradle

– rm single cradle (nested)

– BackProjection for additive model

– cradle attenuation fitting for multiplicative model

– RemoveAttenuationProfile

Walkaround

When using the additive model, if the edge profile is not correctly detected and the
non-cradled region near the cradle member is darkened, try changing opt.s and redo the
process. It could be that opt.s is set too big.

If the edge profile is detected correctly, but the intensity difference hinfo.dI is not
estimated correctly, then you can prefix it to any value you want by setting opt.HdI. If
there are more than one horizontal member, then either a scalar opt.HdI is used for all
members, or a vector opt.HdI is used for treating each member separately.

% step 3: remove all horizontal cradles using additive model
% with prefixed intensity difference
opt.model = 'additive';
opt.HdI = 50 ; % the intensity difference induced by horizontal cradle
[imgnew,hinfo] = RmHorizontalCradle(img,horest,verest,opt);

8

2.4. Remove vertical (fixed) cradle artifact

2.4 Remove vertical (fixed) cradle artifact

After the horizontal cradle members are removed, the vertical cradle artifact shows up in
segments in imgnew. Each vertical segment is cropped out locally and rotated into the
horizontal direction, so that it can be treated as a horizontal cradle member.

It is preferable to remove the vertical cradle members by segments, because some seg-
ments are easier to remove than others that are part of the same vertical cradle member.
Thus we can refine the intensity adjustment on segments that were not well removed by
using the profile learned from segments that are part of the same cradle member and were
removed well.

% step 4: remove all vertical cradles
Iflag = [0, 0]; % indicate whether the very left or right cradle is adjacent ...

to zero background
[I ,vinfo] = RmRegularVerticalCradleSegmentation(imgnew,hinfo,verest,opt);

Input

Iflag indicates if there is a background on the border, so that the background pixel
value won’t be erroneously used in the intensity adjustment estimation.

Output

I the result image with vertical cradle artifact removed, see Fig.2.4.

vinfo same as hinfo

upcutind, midpoint location of edges on the intersection with horizontal members

downcutind

Functions

– RmRegularVerticalCradleSegmentation

– cradledetect re-estimate cradle location for each segment

– RmHorizontalCradle

Walkaround

In ‘multiplicative’ model:

% step 4: remove all vertical cradles
Iflag = [0, 0]; % indicate whether the very left or right cradle is adjacent ...

to zero background
[I ,vinfo] = RmRegularVerticalCradleSegmentation(imgnew,hinfo,verest,opt);

9

2.4. Remove vertical (fixed) cradle artifact

Figure 2.4: Left: vinfo output diagram; Right: I using multiplicative model

% ============optional set edge location using vinfo =====================%
% ******* using multiplicative attenuation model **********%
i1 = 1; j1 = 1; % cradle to be reprocessed
i2 = 2; j2 = 1; % cradle whose profile to be used
[~,vinfo,I] = PostRmCradleProfile(imgnew,vinfo,i1,j1,i2,j2,I);

If the profile (model parameters) of the segment at (i1,j1) is not estimated correctly,
you can use the profile of the segment at (i2,j2) to remove the segment at (i1,j1) by calling
PostRmCradleProfile.

In ‘additive’ model:

% step 4: remove all vertical cradles
Iflag = [0, 0]; % indicate whether the very left or right cradle is adjacent ...

to zero background
% ============optional set edge location using vinfo =====================%
% ****** using additive model ********%
opt.edgeloc v = cell(size(vinfo)); % adjust/prefix vinfo.midpoint
opt.edgeloc v{1} = [176; 367];
opt.edgeloc v{2} = [169; 359];
opt.VdI = [100, 120];% the intensity difference induced by vertical cradle
[I, vinfo] = RmRegularVerticalCradleSegmentation(imgnew,hinfo,verest,opt);

To prefix edge location of each segment, you can provide opt.edgeloc v, which is a cell
array of (# of segments per cradle member) × (# of vertical members). Each cell contains
the prefix midpoint value of the corresponding cradle segment.

10

2.5. Remove intersection of cradle members

Like the previous case, you can provide opt.VdI, which contains the prefix dI value of
each vinfo cell. You can first call RmRegularVerticalCradleSegmentation, and investi-
gate vinfo then deside how to set opt.VdI.

2.5 Remove intersection of cradle members

Finally, the intersections of horizontal and vertical cradle members are removed. This can
be hard, because the intersection region is usually small and has much smaller intensity
difference after the removal of horizontal cradle artifact. Therefore, the estimation is less
robust.

% step 5: remove intersection of cradles
opt.crossmodel = 'linearfit';% 'linearfit' if the crosssection is free of ...

panel content
[Inew,crossinfo] = Rm cross section(I,hinfo,vinfo,opt);

Input

For the ‘multiplicative’ model, use linearfit as primary option, which means fitting
the model in the intersection region of I directly.

For the ‘additive’ model, there is no input to specify.

Output

Inew the result image of stage 1, see Fig.2.5.

crossinfo same as hinfo, vinfo

cutwidth the width of the slot between the horizontal member and the vertical member

Functions

• Rm cross section

– connect vinfo pull segment information vinfo into full member information

– cradle attenuation fitting for multiplicative model, ‘linearfit’

– RemoveAttenuationProfile for multiplicative model, ‘profilefit’

Walkaround

In the ‘multiplicative’ model:

11

2.6. Post-processing (optional): remove boundary artifacts

Figure 2.5: Left: crossinfo output diagram; Right: Inew using multiplicative model

% step 5: remove intersection of cradles
opt.crossmodel = 'profilefit';% 'profilefit' if the linearfit fails
[Inew,crossinfo] = Rm cross section(I,hinfo,vinfo,opt);
scale = .5;
Inew = (Inew-I)*scale + I;

If linearfit fails, use profilefit, which means using the profile of two adjacent
vertical segements to remove the intersection artifact. Since the intensity difference at an
intersection is smaller than that in a vertical cradled region, the difference Inew-I has to
be rescaled by scale.

2.6 Post-processing (optional): remove boundary artifacts

The final result Inew obtained may suffer from boundary artifacts along the edges of cradle
members. There are two main causes for such artifacts: a defect of the X-ray imaging and
an estimation error in stage 1.

Such boundary artifacts show up as long thin extra bright or dark slots around the edges
of cradle members, which can be accurately detected and removed with a Shearlet/Curvelet
transform.

This post-processing is relatively slow because of the usage of the Shearlet transform.

% step 6: remove boundary artifact along edges (optional)
img = Inew;
RmBoundary;

12

2.6. Post-processing (optional): remove boundary artifacts

Figure 2.6: Left: Inew, stage 1 result with boundary artifact along the cutting edges of the
vertical cradle member; Right: post-processing result.

Input

hinfo, vinfo and crossinfo are required to compute the exact location of edges.

Output

See Fig.2.6.

Functions

The shearlet transform uses the implementation of Fast Finite Shearlet transform (FFST)
toolbox, http://www.mathematik.uni-kl.de/imagepro/software/ffst/

• RmBoundary

– info2mask compute mask of cradle region from info’s

– BoundaryImg extract boundary artifact

– shearletTransformSpect, Shearlet and inverse Shearlet transform

inverseShearletTransformSpect from toolbox FFST

13

http://www.mathematik.uni-kl.de/imagepro/software/ffst/

Chapter 3

Cradle Texture Removal

The second stage of the cradle removal algorithm separates the wood grain of cradle mem-
bers as much as possible in order to maximise the enhancement of the X-ray image.

All the processing in this stage is done on blocks of the resulting image from stage one.
Therefore, it can be parallelised and run on a cluster to speed up. The division of a full
image into blocks and the merging of blocks back to a full image is implemented in a naive
way, hence artifacts around the boundaries of blocks may arise in the result.

The pipeline of the first stage in Fig.1.2 can be further broken down into the workflow
shown in Fig.3.1.

The rest of this chapter follows the matlab script TextureRemovalMain.m, and goes
through the major functions and utilities used in the second stage.

3.1 Texture extraction

The texture extraction from an image uses Morphological Component Analysis (MCA),
which decomposes an image into its ‘cartoon’ component and its ‘texture’ component. The
two components are encoded using two competing transforms (or dictionaries) that are
optimized for different types of signals. The MCA decomposition in this algorithm uses
the Dual-tree complex wavelet transform (DTCWT) for the ‘cartoon’ component and a
curvelet transform for the ‘texture’ component. Further, the DC component of the curvelet
transform is set to zero, such that the low frequency part of the image is always contained
in the ‘cartoon’ part.

opt.transform = 'shearlet';
opt.direction = 'horizontal';

% decompose image to blocks
[subimg,orow,ocol,rowind,colind] = img2subpatch(img);

%% step 1: MCA decomposition into cartoon and texture
cartoon = cell(size(subimg));
texture = cell(size(subimg));
for i = 1:size(subimg,1)

for j = 1:size(subimg,2)
img = subimg{i,j};

14

3.1. Texture extraction

Figure 3.1: Texture extraction and separation work flow.

MCAdecomp;
cartoon{i,j} = parts(:,:,1);
texture{i,j} = parts(:,:,2);

end
end

Input

subimg, see Fig.3.2.

Output

See Fig. 3.3

Functions

• MCAdecomp

– FastCDWT2Analysis,

FastCDWT2Synthesis function wrappers for DTCWT

15

3.1. Texture extraction

Figure 3.2: subimg image blocks of stage 1 result.

Figure 3.3: MCA decomposition of subimg. Left: texture; Right: cartoon.

16

3.2. Texture separation I: compute feature vector

– FastCURVWRAPAnalysis,

FastCURVWRAPSynthesis function wrappers for Curvelet transform

The MCA decomposition uses the MCALab toolbox, https://fadili.users.greyc.
fr/demos/WaveRestore/downloads/mcalab/Download.html.

The Curvelet transform uses the Curvelab toolbox, http://www.curvelet.org/.
The dual-tree complex wavelet transform uses the dtcwt toolbox by Nick Kingsbury and

Cian Shaffrey.
All these toolboxes and their dependencies are provided in this package. For correct

installation, please follow the instruction on the websites, whose links are provided above.
MCAdecomp is an iterative algorithm solving an optimization problem. All the parameters

used are the same as the default setting in MCALab. You may use a smaller maximum
number of iterations, itermax, according to the convergence of the algorithm, or change
the stopping criterion to decrease the computation time.

3.2 Texture separation I: compute feature vector

After the texture image is extracted, it is separated using a Bayesian factor model, which
separates each input signal into a cradle signal and a panel signal. Instead of treating the
pixels in the texture image texture directly as signals, the algorithm first takes the Shearlet
transform of texture, such that a feature vector (i.e. a vector of Shearlet coefficients) is
generated at the location of each pixel. These feature vectors are separated by using the
Bayesian model, and the cradle feature vectors and the panel feature vectors are then
converted back to a cradle texture image and a panel texture image respectively by taking
the inverse Shearlet transform. See the workflow in Fig.3.1.

%% set path to folder which saves all intermediate results
result path = '../result/';

%% step 2: Bayesian factor model for texture separation

% prepare feature vectors as input of factor model
computeShearletDescriptor;

Input

texture in Fig.3.3 and hinfo, vinfonew for labelling feature vectors in cradle and
non-cradle region.

Output

hfeatureST *.mat,rfeatureST *.mat saved in result path.

• featureST.mat Matlab data file containing the horizontal/vertical feature vectors
obtained form texture

– featureST.cradle feature vectors from the cradled region

17

https://fadili.users.greyc.fr/demos/WaveRestore/downloads/mcalab/Download.html
https://fadili.users.greyc.fr/demos/WaveRestore/downloads/mcalab/Download.html
http://www.curvelet.org/

3.3. Texture separation II: Bayesian factor model

featureST.free feature vectors from the non-cradle region

– cradle sample size number of feature vectors in featureST.cradle

noncradle sample size number of feature vectors in featureST.free

Functions

• computeShearletDescriptor

– getSTfeature extract feature vectors from Shearlet coefficients

– shearlet angleselection select Shearlet coefficients associated to

near horizontal or near vertical directions

Since the Shearlet transform breaks down texture into textures of different directions
and we are only interested in textures in near horizontal and vertical directions that align
with the directions of cradle members, Shearlet coefficients associated to other directions
are discarded. This angle selection decreases the length of feature vectors and benefits the
Bayesian factor model computation that follows.

3.3 Texture separation II: Bayesian factor model

On each image block and for texture in each direction (horizontal or vertical), a Bayesian
factor model is learned using a relatively small number of samples from the labeled (cradle
vs. non-cradle) feature vectors in featureST.mat. The learned model is used for posterior
inference on all the feature vectors with label ‘cradle’ that needs to be separated. Finally,
the separation result on the feature vectors are reassembled and converted back to the image
domain using the inverse Shearlet transform.

% run MCMC of Bayesian model
dir = 'h';
computeBayesianSeparation;

dir = 'v';
computeBayesianSeparation;

Input

featureST.mat

Output

18

3.3. Texture separation II: Bayesian factor model

FactorModel *.mat learned Bayesian factor model

Bayesian result *.mat posterior inference on FactorModel *.mat

originImg input texture image for separation

result separated cradle texture image

residual residual texture image in the cradled region that
cannot be identified as cradle or non-cradle texture

Fig.3.4 shows the result of texture separation running one trial of the Bayesian factor
model. Since the Bayesian model is a probabilistic model, the separation result is not
deterministic, but close to a steady state.

Functions

• computeBayesianSeparation

– PrepareData4spFactorModel
preprocessing feature vector samples for fac-
tor model input

– spfactcovest mgploadings compute factor model

– spfactor post inference posterior inference on all feature vectors

– invfeatureST convert feature vectors back to image domain

Sampling in large image

When processing a large image, such as Fig.3.5, the whole image is divided into many
blocks, such that each block may not contain enough cradle or non-cradle feature vectors to
sample from. Further, we need to keep the consistency between the Bayesian factor models
learned in adjacent blocks, therefore, it’s necessary to take samples of labeled feature vectors
in a block neighbourhood. As shown in Fig.3.5, for non-cradle feature vectors, samples are
taken in a 8-neighbourhood of the current block, whereas for cradle feature vectors, samples
are taken in a 2-neighbourhood of the current block, which contains the same cradle member.

19

3.3. Texture separation II: Bayesian factor model

Figure 3.4: Bayesian factor model result. Top left: cradle texture result, top right: residual
texture residual, bottom left: texture, bottom middle: texture - result, bottom right:
texture - result - residual.

20

3.3. Texture separation II: Bayesian factor model

Figure 3.5: Sampling strategy for cradle (green) and non-cradle (red) feature vectors.

21

	List of Figures
	Overview
	Background
	Algorithm Pipeline
	Input Demo

	Cradle Detection and Intensity Adjustment
	Load image
	Initial cradle location estimation
	Remove horizontal (sliding) cradle artifact
	Remove vertical (fixed) cradle artifact
	Remove intersection of cradle members
	Post-processing (optional): remove boundary artifacts

	Cradle Texture Removal
	Texture extraction
	Texture separation I: compute feature vector
	Texture separation II: Bayesian factor model

