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Turbulence

Fluids, liquids and gases, have the ability to flow.

Fluid mechanics: the study of how fluids move and the forces on them!
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Turbulence

Understanding and predicting how fluids move is of enormous importance to a
vast range of problems:
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Turbulence

However, in many other problems, the fluid motion is extremely complex, and
understanding and predicting the fluid motion and its effect on natural problems
is an enormous challenge.

The difference is that in these problems the fluid motion is turbulent.

An extremely brief intro to turbulence: Depending upon the flow properties
(velocity, boundary conditions, viscosity of fluid etc), the motion of a fluid can
be either LAMINAR or TURBULENT, and these are radically different!
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Turbulence

Rising smoke illustrates the difference between laminar and turbulent flows:

Laminar flow is orderly, regular, predictable.
Turbulent flow looks random, chaotic, irregular, unpredictable (depending
on the intensity of turbulence).
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Turbulence

Example: Airplane Turbulence.
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Turbulence

Turbulence: easy to observe, but extremely difficult to understand.

Feynman: “turbulence is the last great unsolved problem in classical physics”.

It is also connected to deep problems in pure and applied mathematics.

However, turbulence is not only a very intellectually rich and stimulating
problem to work on, but it is also extremely important practically.
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Turbulence

Example: Turbulence enhances mixing.

You have probably already observed this:

This has great implications...for air pollution, combustion, chemical reactions,
heat transfer...

In fact, turbulence has great implications for understanding and predicting a
wide variety of problems...
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Turbulence

Cosmos: turbulence is important because it distributes magnetism, disperses
heat from supernova events and even plays a role in planet and star formation.

Volcano: the dispersion of ash in the atmosphere is controlled by atmospheric
turbulence, with implications for the environment and aviation.

Plankton: play a major role in the carbon cycle, and turbulent mixing impacts
their population dynamics.

Clouds: are important not only for weather, but also for climate, and
turbulence controls the thermodynamics of clouds, radiative properties, and the
rate at which droplets grow to form rain.
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Turbulence

But, we do not really understand how turbulence affects these problems, nor are
we able to predict its effects very well.

So there are two aspects to solving these problems: Understanding
(inference) and Prediction.

1	

THEORY	

• Phase	space	analysis.	
• Non-equilibrium	statistical	physics.	
• Asymptotic	methods	&	perturbation	

theory.	
• Dynamical	systems	theory.	

	

							HPC	

• Direct	Numerical	Simulation.	

	

													MODELING	

• Simplified	models	that	
capture	all	scales	of	the	
problems.	

	

GOALS	
• Advance	our	fundamental	

understanding	of	the	problems.	
• Use	this	to	guide	the	development	of	

simplified	predictive	models.	

EXPERIMENTS	
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Particle Clustering in Turbulent Flow

Particle-laden turbulent flows appear in a diverse range of engineering systems
and natural phenomena.

In clouds, this is related to how turbulence affects the dynamics of water
droplets and ice crystals, how they collide and mix etc.

	

+	

+	

+	
_	

_	_	

In clouds (thunderstorm and non-thunderstorm), particles (droplets or ice
crystals) are often charged.

How do the electric forces compete with the turbulent air to control the particle
collisions and mixing rates?

What are the implications for the electrodynamics of clouds?
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Particle Clustering in Turbulent Flow

Problem of interest: rain formation

The particle properties (particularity their inertia and fall speed) can
significantly change the interaction of particles with the turbulent flow
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Particle Clustering in Turbulent Flow

Problem of interest: rain formation

Indeed, inertial particles are distributed non-uniformly in the turbulent flow.
In addition, the presence of gravity results in finite settling velocities of
inertial particles
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Particle Clustering in Turbulent Flow

The non-uniform distribution of particles can lead to the formation of
clusters.

Clusters, the group regions of highly concentrated particles, which can
significantly change the structure of the turbulence and produce substantial
inhomogeneities in the spatial concentration of particles.
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Particle Clustering in Turbulent Flow
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Particle Clustering in Turbulent Flow

We employ Direct Numerical Simulations (DNS) to model turbulent flow
and track particles lying under an idealized turbulence in a cubic box.
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Particle Clustering in Turbulent Flow

In these simulations, three independent control parameters representing the
properties of turbulent flow and particles are varied and particles’ position
and other dynamical properties of particles and flow fields (e.g. velocity)
are stored.
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Particle Clustering in Turbulent Flow

More specifically, we want to explore how intensity of turbulence
(quantified by Reynolds number or Re), gravitational acceleration
(quantified by Froud number or Fr) and particles’ characteristics (e.g. size,
density which is quantified by Stokes number or St) affect the spatial
distribution and clustering of particles in an idealized turbulence
(homogeneous isotropic turbulence or HIT).
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Particle Clustering in Turbulent Flow

Numerical Simulation of Particle Distribution in Turbulence**video .
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https://www.youtube.com/watch?v=hKVZr2mM644&list=PLsfRXtoo6vyK4aHB7kR8ft3K0wKtcE7OK&index=2&t=36s


Particle Clustering in Turbulent Flow

High-resolution numerical simulation of the turbulent flow field can be
achieved by employing direct numerical simulation (DNS) of Navier-Stokes
equations (conservation of mass and momentum) which can resolve all
scales of motion.

∂tu+ ω × u+∇
(
p

ρf
+
‖u‖2

2

)
= ν∇2u+ f , ∇ · u = 0

DNS is computationally prohibitive and cannot be applied to simulate flow
at large Reynolds numbers.

Reynolds Number (Re), quantifies the intensity of a turbulent flow.
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Particle Clustering in Turbulent Flow

In the real problems of interest, oceanic and atmospheric turbulent flow,
the Re is very large (O(107) or more).

We use DNS over a range of Re to look for trends in the behavior. This
can provide insight regarding the extent to which results obtained at
low/moderate Re might be extrapolated the real problems of interest.
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Particle Clustering in Turbulent Flow

Turbulent flow property: Our DNS study considers Rλ = 90, 224, 398,
where Rλ ≡ u′λ/ν.

The higher the Re, the higher the resolution (more grid points; Ng = 1283,
Np = 16 for Rλ = 90 versus Ng = 10243, Np = 1024 for Rλ = 398; 2 days
versus 4 months!)

particle tracking:

d2

dt2
xp(t) =

d

dt
vp(t) =

u(xp(t), t)− vp(t)

τp
+ g
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Particle Clustering in Turbulent Flow

Particle property (effect of gravity or fall speed): Fr =∞, 0.3
(cumulonimbus clouds), 0.052 (cumulus clouds). The stronger gravity, the
larger the domain.

Particle property (effect of inertia; e.g. size. density): fifteen St in the
range of 0 ≤ St ≤ 3. The larger the St, the more difficult to solve the
particle’s equation.
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Particle Clustering in Turbulent Flow

To obtain local insight into the clustering of particles, the Voronoi diagrams
(tessellation) approach is employed as the data processing technique to
identify regions of high (clusters) and low (voids) concentration of particles.

Using this technique enables characterization of the general features of
individual clusters such as topology and spatial orientation (and the
kinematics and dynamics of clusters) in the underlying turbulence.

The appearance of clustering and its strength is diagnosed by exploring the
distribution of Voronöı volumes over a significant range of the three
parameter space Fr =∞, 0.3, 0.052, Rλ = 90, 224, 398 and 0 ≤ St ≤ 3
which are varied independently.
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Clustering Analysis via Voronöı Tessellation

Voronoi diagrams are used to understand patterns over an area of interest.

(https://www.safe.com/transformers/voronoi-diagrammer/ )

After collecting data points and recording their location, the plane can be
divided into sections, or Voronoi cells, that are representative of each data
point.

A Voronoi diagram describes the spatial relationship between points that
are near each other, or their nearest neighbours. It is a set of connection
polygons derived from points or locations.

Data Expedition Fall 2019 21
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Voronoi diagrams are used to understand patterns over an area of interest.

(https://www.safe.com/transformers/voronoi-diagrammer/ )

After collecting data points and recording their location, the plane can be
divided into sections, or Voronoi cells, that are representative of each data
point.

A Voronoi diagram describes the spatial relationship between points that
are near each other, or their nearest neighbours. It is a set of connection
polygons derived from points or locations.

Data Expedition Fall 2019 21



Clustering Analysis via Voronöı Tessellation
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Clustering Analysis via Voronöı Tessellation

Voronöı diagram definition: The partitioning of a plane with n points into
convex polygons such that each polygon contains exactly one generating
point and every point in a given polygon is closer to its generating point
than to any other.

Data Expedition Fall 2019 22



Clustering Analysis via Voronöı Tessellation
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Clustering Analysis via Voronöı Tessellation

First step is to draw a line connecting adjacent points.

Second step is to draw a perpendicular line to the one you just drew in the
midpoint of it.

Last step is to connect lines, drawn in the second step, in to an network.
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Clustering Analysis via Voronöı Tessellation

Application: They find widespread applications in areas such as nearest
neighbor queries for data structure problems in computational geometry,
business applications such as determining where to locate a store so it is no
closer to any existing store of its kind, epidemiology, geophysics, and
meteorology .

City Planning: one can easily determine where is the nearest shop or
hospital, and urban planners can study if certain area need a new hospital
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Clustering Analysis via Voronöı Tessellation

Application: They find widespread applications in areas such as nearest
neighbor queries for data structure problems in computational geometry,
business applications such as determining where to locate a store so it is no
closer to any existing store of its kind, epidemiology, geophysics, and
meteorology .
Robot Path Planning: restricting a robot to traverse the edges created by
the voronoi diagram
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Clustering Analysis via Voronöı Tessellation

A voronoi diagram records information about the distances between sets of
points in any dimensional space.

Higher Dimensions Voronoi Diagrams: Cells are convex polytopes

More s.
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Clustering Analysis via Voronöı Tessellation

Now that we are familiar with Voronöı Tessellation concept and particle
clustering in turbulence, we are ready to analyze clusters.
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Clustering Analysis via Voronöı Tessellation

Recall that for each simulation we write out the particles’ position and this
data serve as input for the 3D Voronöı analysis.

We employ the 3D Voronöı diagrams on DNS simulations over a wide
range of three control parameters Rλ, Fr and St. For each tuple
(Re, Fr, St), we analyze multiple (∼25) snapshots (time step) of
simulations to collect sufficient data for statistical convergence.

Given the particles’ position and box volume, an id (index) is assigned to
each particle. The output of 3D Voronöı analysis is the cell volume as well
as neighbors list for each particle.

Considering the Voronöı volume as a random variable, we compute its
probability distribution function (PDF) for different combinations of
(Re, Fr, St).
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Clustering Analysis via Voronöı Tessellation

Indeed, the local particle concentration field is represented by the inverse of
the volume of Voronöı cells. The small/large Voronöı volumes represent the
high/low concentration regions of the flow.
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Clustering Analysis via Voronöı Tessellation

In certain regimes, the PDF of Voronöı volumes follows a log-normal
distribution!
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Clustering Analysis via Voronöı Tessellation

In certain regimes, the PDF of Voronöı volumes follows a log-normal
distribution!
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Clustering Analysis via Voronöı Tessellation

The PDF of inertial particles intersect the RPP at two points, one is
smaller and the other one is greater than the mode of RPP, which are
denoted by ϑC and ϑv, respectively. These points serve as thresholds to
detect clusters and voids.
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Clustering Analysis via Voronöı Tessellation

We then consider the properties of particles in clusters, which are regions of
connected Voronöı cells whose volume is less than a certain threshold.

To detect the clusters in each simulation of (Re, Fr, St), we first choose
the particle ids that their cell volumes is smaller than the threshold ( ϑC).
These particles may form a cluster, if they are connected together.

Then we run a searching algorithm to go through the neighbors of those
particles and pick neighbors that also their cell volumes are smaller than
the threshold.

We continue this procedure recursively for the neighbors of neighbors of
neighbors of ... until we find all the connected cells of clusters. For some
cases it may take 12 days to find all the clusters of one snapshot of flow!
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Clustering Analysis via Voronöı Tessellation
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Clustering Analysis via Voronöı Tessellation

Volume of each cluster is sum of the Voronöı volumes of its constituent
particles. Let’s see how the PDF of cluster volumes behaves:
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Clustering Analysis via Voronöı Tessellation

How about the average (first moment) size and the standard deviation
(second moment) of clusters?
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Clustering Analysis via Voronöı Tessellation
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Data Expedition task

Given the first four moments of cluster volumes for 112 tuple of
(Re, Fr, st), build a supervised machine learning model that take a tuple
and outputs the first four moments.
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Backup slides: DNS table
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Backup slides: Re number
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Clustering Analysis via Voronöı Tessellation

Given the Voronöı volumes, the clustering of inertial particles is explored by
comparing the PDF of inertial particles (St > 0) with the fluid particles
(St = 0).

The fluid particles always follow the streamlines, have a uniform random
distribution and their Voronöı tessellation PDF is unique (Random Poisson
process or RPP).

We then consider the properties of particles in clusters, which are regions of
connected Voronöı cells whose volume is less than a certain threshold.
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