Trust and Resilience in Distributed Consensus Cyberphysical Systems

Michal Yemini

Joint work with Angelia Nedić, Stephanie Gil and Andrea Goldsmith

Princeton University

October 18, 2021

Outline

- 1. Distributed Consensus Systems.
- 2. Malicious Agents in Distributed Consensus Systems.
- 3. Agents' Trust Values in Cyberphysical Systems.
- 4. Characterizing Trust-Based Resilience in Distributed Consensus Systems.
- 5. Numerical Results.
- 6. Conclusions and Future Work.

Distributed Consensus Systems

Leaderless coordination and control for multi-agent systems.

- ► Robotic and drone networks (rendezvous problem).
- ► Sensor networks (data fusion temperature measurement).
- ► Social networks (reaching a common opinion).

Mathematical of Modeling Distributed Consensus Systems

A connected graph $G=(\mathbb{V}\,,\mathbb{E})$, a stochastic weight matrix W and initial vector values x(0).

For all $t \geq 0$

$$x_i(t+1) = w_{ii}x_i(t) + \sum_{j \in \mathcal{N}_i} w_{ij}x_j(t),$$

where $\mathcal{N}_i = \{j \in \mathbb{V} \mid \{i \,, j\} \in \mathbb{E}\}$ and

$$w_{ii} > 0$$
, $w_{ij} > 0$ for all $j \in \mathcal{N}_i$,

M. DeGroot 1970's (opinion dynamics), J. Tsitsiklis 1980's (distributed optimization)

It follows that

$$\lim_{t \to \infty} x_i(t) = \left[\lim_{t \to \infty} W^t x(0)\right]_i = \left[\mathbf{1} v' x(0)\right]_i = \lim_{t \to \infty} x_j(t) , \forall i, j$$

where v' is the Perron-Frobenius left-eigenvector of W.

Malicious Agents in Distributed Consensus Systems

In practice not all agents are legitimate (truthful), some are malicious and strategically input malicious values to either:

- prevent consensus,
- deviate the consensus from its true value.

The Classical Bound

The maximal number malicious agents that can be tolerated:

Legitimate agents can reach consensus iff the number of malicious agents is *less than* 1/2 *of the network connectivity*¹.

Proofs:

- ► Lamport, Pease and Shostak 1980, D. Dolev 1981 (Byzantine, fault tolerance, an additional condition),
- ► F. Pasqualetti, A. Bicchi and F. Bullo 2012 (control theory).

Both proofs assume that every legitimate agent knows the topology of ${\cal G}$, and cannot detect malicious agents that only lie about their initial input values.

¹The connectivity of a graph is the maximum number of disjoint paths between any two vertices of the graph.

Agents' Trust Values in Cyberphysical Systems I

Prior works have used the **data values** to overcome/detect malicious behavior. The **physical** aspects of the problem have not been considered. Namely, the **wireless communication channels**.

In cyberphysical systems:

- ▶ Malicious agents can lie about their location.
- A malicious agent can create many fictitious identities (Sybil attack).

Agents' Trust Values in Cyberphysical Systems II

Each transmitted signal leads to a received signal characteristics:

- ► Number of paths, delays.
- ► Angles of arrival.
- Power order of the angles of arrival.
- Power of the received signals.

*Guaranteeing spoof-resilient multi-robot networks, S. Gil *et al* 2017.

Agents' Trust Values in Cyberphysical Systems III

We can generate trust values that captures the event that an agent

- ▶ lies about its location
 - Location Verification Systems for VANETs in Rician Fading Channels, S. Yan et al 2016.
- uses a Sybil attack and creates multiple fictitious agents
 - Detecting Colluding Sybil Attackers in Robotic Networks using Backscatters Y. Huang et al 2021.
 - (Limited to single antenna malicious agents.)
 - ► Guaranteeing spoof-resilient multi-robot networks, S. Gil *et al* 2017. (Limited to single antenna malicious agents.)
 - ► The Mason Test: A Defense Against Sybil Attacks in Wireless Networks Without Trusted Authorities, Liu *et al* 2015.
 - (Assumes limited mobility of malicious agents and no beamforming).

We denote by $\alpha_{ij}(t) \in [0, 1]$ the instantaneous single sample trust agent i gives agent j at time a t.

The Trust Based Distributed Consensus Model

Consider the system

$$\begin{bmatrix} X_{\mathcal{L}}(t+1) \\ X_{\mathcal{M}}(t+1) \end{bmatrix} = \begin{bmatrix} W_{\mathcal{L}}(t) & W_{\mathcal{M}}(t) \\ \Theta(t) & \Omega(t) \end{bmatrix} \begin{bmatrix} X_{\mathcal{L}}(t) \\ X_{\mathcal{M}}(t) \end{bmatrix},$$

where $|x_i(t)| \le \eta$ for every $i, j \in \mathcal{L} \cup \mathcal{M}$ and $t \ge 0$.

For every $i \in \mathcal{L}$:

$$x_{i}(t+1) = \underbrace{\left[1 - \sum_{j \in \mathcal{N}_{i}} W(i, j, t, \frac{\beta_{ij}(t)}{\beta_{ij}(t)})\right]}_{y_{ij}(t)} x_{i}(t) + \underbrace{\sum_{j \in \mathcal{N}_{i}} \underbrace{W(i, j, t, \frac{\beta_{ij}(t)}{\beta_{ij}(t)})}_{w_{ij}(t)} x_{j}(t)$$

where

$$\blacktriangleright \beta_{ij}(t) = f(\alpha_{ij}(0), \dots, \alpha_{ij}(t))$$

The Trust Based Distributed Consensus Model

For every $i \in \mathcal{L}$:

$$x_i(t+1) = \underbrace{[1 - \sum_{j \in \mathcal{N}_i} W(i, j, t, \beta_{ij}(t))]}_{w_{ii}(t)} x_i(t) + \underbrace{\sum_{j \in \mathcal{N}_i} W(i, j, t, \beta_{ij}(t))}_{w_{ij}(t)} x_j(t)$$

where

- $\beta_{ij}(t) = f(\alpha_{ij}(0), \dots, \alpha_{ij}(t))$
- $\blacktriangleright \ w_{ii}(t) > 0, \ w_{ij}(t) \ge 0, \ j \in \mathcal{N}_i, \ \sum_{j \in \mathcal{N}_i} w_{ij} = 1$
- $w_{ij}(t) > 0$, $j \in \mathcal{N}_i \cap \mathcal{M}$ finitely many times a.s.
- $w_{ij}(t) = 0, j \in \mathcal{N}_i \cap \mathcal{L}$ finitely many times a.s.

Research Objectives

Objective I - Finite correct classification time

Establish characteristics of $\alpha_{ij}(t)$, and functions $\beta_{ij}(t)$ that lead to a **finite detection time** for the correct classification of legitimate and malicious agents **almost surely**.

Objective II - Convergence of the consensus protocol

Choose weights $W(i, j, t, \beta_{ij}(t))$ that allow **convergence** in spite of the presence of adversarial attacks.

Objective III - Bounded deviation for average consensus

We bound the **deviation** from the **true** consensus value, $\Delta(\delta)$ that can be achieved with a probability at least $1 - \delta$.

Cumulative Trust Values

We assume that:

- $ightharpoonup \alpha_{ij}(t)$ are statistically independent.
- ▶ There exist scalars c < 0 and d > 0 such that²

$$c = c_{ij} = E(\alpha_{ij}(t)) - 1/2$$
 for all $i \in \mathcal{L}$, $j \in \mathcal{N}_i \cap \mathcal{M}$, $d = d_{ij} = E(\alpha_{ij}(t)) - 1/2$ for all $i \in \mathcal{L}$, $j \in \mathcal{N}_i \cap \mathcal{L}$.

To capture the **history** of observations $\alpha_{ij}(t)$, we define:

$$\beta_{ij}(t) = \sum_{k=0}^{t} (\alpha_{ij}(k) - 1/2) \text{ for } t \ge 0, i \in \mathcal{L}, j \in \mathcal{N}_i.$$

Agent i classifies agent j as legitimate if $\beta_{ij}(t) \geq 0$ and malicious otherwise.

²For the sake of simplicity of presentation.

Finite Correct Classification Time I

Lemma

For every $t \geq 0$ and $i \in \mathcal{L}$

$$\Pr(\beta_{ij}(t) < 0) \le \exp(-2(t+1)d^2), j \in \mathcal{N}_i \cap \mathcal{L},$$

$$\Pr(\beta_{ij}(t) \ge 0) \le \exp(-2(t+1)c^2), j \in \mathcal{N}_i \cap \mathcal{M}.$$

This is an immediate result of the Chernoff-Hoeffding Inequality.

Proposition

There exists a (random) finite time instant $T_f > 0$ such that every legitimate agent i correctly classifies its neighbors for all $t \geq T_f$ almost surely.

This proposition follows by the Borel-Cantelli Lemma

The Modified Trust Based Weights

Define the time dependent **trusted neighborhood** for agent *i*:

$$\mathcal{N}_i(t) = \{ j \in \mathcal{N}_i : \beta_{ij}(t) \ge 0 \},$$

We choose for all $i \in \mathcal{L}$,

$$w_{ij}(t) = \begin{cases} \mathbbm{1}_{\{t \geq T_0 - 1\}} \cdot \min\left\{\frac{1}{\kappa}, \frac{1}{|\mathcal{N}_i(t)| + 1}\right\} & \text{if } , j \in \mathcal{N}_i(t), \\ 0 & \text{if } , j \notin \mathcal{N}_i(t) \cup \{i\}, \\ 1 - \sum_{m \in \mathcal{N}_i} w_{im}(t) & \text{if } j = i. \end{cases}$$

where $\kappa > 0$ is a limiting effect constant.

Up to time T_0 agents measure the trust values of their neighbors but don't update their data values.

The Data Values of the Legitimate Agents

Recall that:
$$\begin{bmatrix} X_{\mathcal{L}}(t+1) \\ X_{\mathcal{M}}(t+1) \end{bmatrix} = \begin{bmatrix} W_{\mathcal{L}}(t) & W_{\mathcal{M}}(t) \\ \Theta(t) & \Omega(t) \end{bmatrix} \begin{bmatrix} X_{\mathcal{L}}(t) \\ X_{\mathcal{M}}(t) \end{bmatrix}.$$
 Thus,

$$x_{\mathcal{L}}(t) = \tilde{x}_{\mathcal{L}}(t) + \phi_{\mathcal{M}}(t),$$

where³

$$\tilde{x}_{\mathcal{L}}(t) = \left(\prod_{k=T_0-1}^{t-1} W_{\mathcal{L}}(k)\right) x_{\mathcal{L}}(0),$$

and

$$\phi_{\mathcal{M}}(t) = \sum_{l=T-1}^{t-1} \left(\prod_{l=l+1}^{t-1} W_{\mathcal{L}}(l) \right) W_{\mathcal{M}}(k) x_{\mathcal{M}}(k).$$

³Note that $W_{\mathcal{L}}(k)$ can be substochastic.

Convergence of the Consensus Protocol I

Define a matrix $\overline{W}_{\mathcal{L}}$ such that for every $i,j\in\mathcal{L}$,

$$[\overline{W}_{\mathcal{L}}]_{ij} = \begin{cases} \min\left\{\frac{1}{\kappa}\,, \frac{1}{|\mathcal{N}_i|+1}\right\} & \text{if } j \in \mathcal{N}_i \cap \mathcal{L}, \\ 1 - \min\left\{\frac{|\mathcal{N}_i \cap \mathcal{L}|}{\kappa}\,, \frac{|\mathcal{N}_i \cap \mathcal{L}|}{|\mathcal{N}_i|+1}\right\} & \text{if } j = i, \\ 0 & \text{otherwise}. \end{cases}$$

Then, almost surely there exists a (random) finite time T_f such that

$$\prod_{k=T_0-1}^{\infty} W_{\mathcal{L}}(k) = \underbrace{\lim_{k \to \infty} \overline{W}_{\mathcal{L}}^{k-\max\{T_f, T_0\}}}_{\mathbf{1}_{v'}} \prod_{k=T_0-1}^{\max\{T_f, T_0\}-1} W_{\mathcal{L}}(k),$$

and $W_{\mathcal{M}}(t) = \mathbf{0}$ for every $t > T_f$.

Convergence of the Consensus Protocol II

Proposition

Almost surely, there exists a random variable $z(T_0)$ such that

$$\lim_{t \to \infty} x_{\mathcal{L}}(t) = z(T_0)\mathbf{1},$$

where $z(T_0)$ is in the convex hull of the initial values $x_i(0)$, $i \in \mathcal{L} \cup \mathcal{M}$, and its distribution depends on the starting time T_0 of the data passing phase.

The Deviation from Nominal Consensus Value

Theorem

Given an error level $\delta > 0$, we have the following result

$$\Pr\left(\max_{i\in\mathcal{L}}\limsup_{t\to\infty}\left|\left[x_{\mathcal{L}}(t)-\mathbf{1}v'x_{\mathcal{L}}(0)\right]_{i}\right|\leq\Delta_{\max}(T_{0},\delta)\right)\geq1-\delta,$$

where $\Delta_{\textit{max}}(T_0\,,\delta)=2\left[\tilde{g}_{\mathcal{L}}(T_0\,,\delta)+\tilde{g}_{\mathcal{M}}(T_0\,,\delta)\right],$

$$\tilde{g}_{\mathcal{L}}(\delta) = \frac{\eta |\mathcal{L}|^2}{\delta} \cdot \frac{\exp(-2T_0 d^2)}{1 - \exp(-2d^2)} + \frac{\eta |\mathcal{L}||\mathcal{M}|}{\delta} \cdot \frac{\exp(-2T_0 c^2)}{1 - \exp(-2c^2)},$$

and

$$\tilde{g}_{\mathcal{M}}(T_0, \delta) = \frac{\eta |\mathcal{L}||\mathcal{M}|}{\delta \cdot \kappa} \cdot \frac{\exp(-2T_0c^2)}{1 - \exp(-2c^2)}.$$

$$x_{\mathcal{L}}(t) = \tilde{x}_{\mathcal{L}}(t) + \phi_{\mathcal{M}}(t) \Rightarrow |x_{\mathcal{L}}(t) - \mathbf{1}v'x_{\mathcal{L}}(0)|_{i} \leq |\tilde{x}_{\mathcal{L}}(t) - \mathbf{1}v'x_{\mathcal{L}}(0)|_{i} + |\phi_{\mathcal{M}}(t)|_{i}.$$

A Few Words regarding the Expected Convergence Time I

Proposition

Assume that $j \in \mathcal{N}_i \Leftrightarrow i \in \mathcal{N}_j$ (symmetric connectivity of legitimate agents). Then, for every $T_0 \geq 0$ and $t \geq T_0$, we have

$$E(||x_{\mathcal{L}}(t) - \mathbf{1}v'x_{\mathcal{L}}(0)||_{v})$$

$$\leq 2\left(\frac{t - T_{0}}{2} + 1\right)\rho_{2}^{\frac{t - T_{0}}{2}}\eta + \left(\frac{|\mathcal{L}|^{2}\exp(-(t + T_{0} + 2)d^{2})}{1 - \exp(-2d^{2})}\right)$$

$$+ \frac{|\mathcal{L}||\mathcal{M}|\exp(-(t + T_{0} + 2)c^{2})}{1 - \exp(-2c^{2})}2\eta$$

$$= O(|\mathcal{L}|\cdot \max\{|\mathcal{L}|, |\mathcal{M}|\} \cdot te^{-\gamma t}),$$

where $\rho_2 < 1$ is the second largest eigenvalue modulus of $\overline{W}_{\mathcal{L}}$ and v > 0 be the stochastic Perron vector satisfying $v'\overline{W}_{\mathcal{L}} = v'$.

Numerical Results

- \triangleright $|\mathcal{L}| = 15$ legitimate agents
- $|\mathcal{M}| = 5, 15, 30$
- $\eta = 5, \ \kappa = 10;$
- \blacktriangleright $E(\alpha_{ij}) = 0.55$ for $i \in \mathcal{L}$, $j \in \mathcal{N}_i \cap \mathcal{L}$,
- \blacktriangleright $E(\alpha_{ij}) = 0.45$ for $i \in \mathcal{L}$, $j \in \mathcal{N}_i \cap \mathcal{M}$,
- $ightharpoonup \ell = 0.2, 0.4, 0.6$

Classical bound must fulfill $|\mathcal{M}| < \frac{3+|\mathcal{M}|}{2} \Rightarrow |\mathcal{M}| < 3$.

Numerical Results - Maximum Deviation Input I

Numerical Results - Drift Input I

Conclusions and Future Work

- ▶ Physical based trust values to brake the current known bound
- ► Modified weight matrix based on trust values
- ► Finite detection time a.s., convergence, deviation from true consensus value
- ► Future work

Thank You!

Questions? Collaboration ideas? Email: myemini@princeton.edu