Research

Research projects at Rhodes iiD focus on building connections. We encourage crosspollination of ideas across disciplines, and to develop new forms of collaboration that will advance research and education across the full spectrum of disciplines at Duke. The topics below show areas of research focus at Rhodes iiD. See all of our research.

KC and Patrick led two hands-on data workshops for ENVIRON 335: Drones in Marine Biology, Ecology, and Conservation. These labs were intended to introduce students to examples of how drones are currently being used as a remote sensing tool to monitor marine megafauna and their environments, and how machine learning can be used to efficiently analyze remote sensing datasets. The first lab specifically focused on how drones are being used to collect aerial images of whales to measure changes in body condition to help monitor populations. Students were introduced to the methods for making accurate measurements and then received an opportunity to measure whales themselves. The second lab then introduced analysis methods using computer vision and deep neural networks to detect, count, and measure objects of interest in remote sensing data. This work provided students in the environmental sciences an introduction to new techniques in machine learning and remote sensing that can be powerful multipliers of effort when analyzing large environmental datasets.

We introduced students to spatial analysis in QGIS and R using location data from two whale species tagged with satellite transmitters. Students were given satellite tracks from five Cuvier’s beaked whales (Ziphius cavirostris) and five short-finned pilot whales (Globicephala macrorhynchus) tagged off the North Carolina coast. Students then used RStudio to calculate two metrics of these species' spatial ranges: home range (where a species spends 95% of its time) and core range (where a species spends 50% of its time). Next, students used QGIS to visualize the data, producing maps that displayed the whales' tracks and their ranges.

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh

Yanchen Ou (Computer Science) and Jiwoo Song (Chemistry, Mechanical Engineering) spent ten weeks building tools to assist in the analysis of smart meter data. Working with a large dataset of transformer and household data from the Kyrgyz Republic, the team built a data preprocessing pipeline and then used unsupervised machine-learning techniques to assess energy quality and construct typical user profiles.

 

Click here to read the Executive Summary

 

Faculty Lead: Robyn Meeks

Project Manager: Bernard Coles

Katelyn Chang (Computer Science, Math) and Haynes Lynch (Environmental Science, Policy) spent ten weeks building tools to analyze and visualize geospatial and remote sensing data arising from the Alligator River National Wildlife Refuge (ARNWR). The team produced interactive maps of physical characteristics that were tailored to specific refuge management professionals, and also built classifiers for vegetation detection in LandSat imagery.

 

Click here to read the Executive Summary

 

Faculty Leads: Justin Wright, Emily Bernhardt

Project Manager: Emily Ury

Varun Nair (Economics, Physics), Paul Rhee (Computer Science), Jichen Yang (Computer Science, ECE), and Fanjie Kong (Computer Vision) spent ten weeks helping to adapt deep learning techniques to inform energy access decisions.

 

Click here to read the Executive Summary

 

Faculty Lead: Kyle Bradbury

Project Manager: Fanjie Kong

Yoav Kargon (Mechanical Engineering) and Tommy Lin (Chemistry, Computer Science) spent ten weeks working with data from the Water Quality Portal (WQP), a large national dataset of water quality measurements aggregated by the USGS and EPA. The team went all the way from raw data to the production of Pondr, an interactive and comprehensive tool built with R Shiny that permits users to investigate and visualize data coverage, values, and trends from the WQP.

 

Click here to read the Executive Summary

 

Faculty Lead: Jim Heffernan

Project Manager: Nick Bruns

Marco Gonazales Blancas (Civil Engineering) and Mengjie Xiu (Masters, BioStatistics) spent ten weeks building tools to help Duke reduce its energy footprint and achieve carbon neutrality by 2024. The team processed and analyzed troves of utility consumption data and then created practical monthly energy use reports for each school at Duke. These reports show historical usage trends, provide energy benchmarks for comparison, and make practical suggestions for energy savings.

Click here to read the Executive Summary

 

Faculty Lead: Billy Pizer

Project Manager: Sophia Ziwei Zhu

Vincent Wang (Computer Science, CE), Karen Jin (Bio/Stats), and Katherine Cottrell (Computer Science) spent ten weeks building tools to educate the public about lake dynamics and ecosystem health. Using data collected over a period of 50 years at the Experimental Lake Area (ELA) in Ontario, the team preprocessed and merged datasets, made a series of data visualizations, and produced an interactive website using R Shiny.

Click here to read the Executive Summary

 

Faculty Lead: Kateri Salk

Project Manager: Kim Bourne

Vivek Sahukar (Masters, Data Science), Yuval Medina (Computer Science), and Jin Cho (Computer Science/Electrical & Compter Engineering) spent ten weeks creating tools to help augment the experience of users in the StreamPULSE community. The team created an interactive guide and used data sonification methods to help users navigate and understand the data, and they used a mixture of statistical and machine-learning methods to build out an outlier detection and data cleaning pipeline.

Click here to read the Executive Summary

Faculty Leads: Emily Bernhardt, Jim Heffernan

Project Managers: Alice Carter, Michael Vlah

Cassandra Turk (Economics) and Alec Ashforth (Economics, Math) spent ten weeks building tools to help minimize the risk of trading electricity on the wholesale energy market. The team combined data from many sources and employed a variety of outlier-detection methods and other statistical tools in order to create a large dataset of extreme energy events and their causes. They had the opportunity to consult with analytics professionals from Tether Energy.

Click here to read Executive Summary

 

Project Lead: Eric Butter, Tether

Large publicly available environmental databases are a tremendous resource for both scientists and the general public interested in climate trends and properties. However, without the programming skills to parse and interpret these massive datasets, significant trends may remain hidden from both scientists and the public. In this data exploration, students, over the course of three hours, accessed two large, publicly available datasets, each with greater than 4 million observations. They learned how to use R and RStudio to effectively organize, visualize and statistically explore trends in deep sea physical oceanography.  

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Varun Nair (Mechanical Engineering), Tamasha Pathirathna (Computer Science), Xiaolan You (Computer Science/Statistics), and Qiwei Han (Chemistry) spent ten weeks creating a ground-truthed dataset of electricity infrastructure that can be used to automatically map the transmission and distribution components of the electric power grid. This is the first publicly available dataset of its kind, and will be analyzed during the academic year as part of a Bass Connections team.

Click here to read the Executive Summary

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

Understanding of how to manipulate, analyze, and display large datasets is an essential skill in the life sciences. Introducing students to the concepts of coding languages and showing them the diversity of tasks that can be accomplished using a flexible coding scheme like R is an important step in the training of any life sciences professional. For students taking lab-based courses, who are often required to analyze the datasets they produce in class, learning these techniques can be helpful both in the short-term (i.e., during the semester) and for their future careers.

Sophie Guo, Math/PoliSci major, Bridget Dou, ECE/CompSci major, Sachet Bangia, Econ/CompSci major, and Christy Vaughn spent ten weeks studying different procedures for drawing congressional boundaries, and quantifying the effects of these procedures on the fairness of actual election results.

Anna Vivian (Physics, Art History) and Vinai Oddiraju (Stats) spent ten weeks working closely with the director of the Durham Neighborhood Compass. Their goal was to produce metrics for things like ambient stress and neighborhood change, to visualize these metrics within the Compass system, and to interface with a variety of community stakeholders in their work.

ECE majors Mitchell Parekh and Yehan (Morton) Mo, along with IIT student Nikhil Tank, spent ten weeks understanding parking behavior at Duke. They worked closely with the Parking and Transportation Office, as well as with Vice President for Administration Kyle Cavanaugh.

Sharrin ManorArjun DevarajanWuming Zhang, and Jeffrey Perkins explored a lage collection of imagery data provided by the U.S. Geological Survey, with the goal of identifying solar panels using image recognition. They worked closely with the Energy Data Analytics Lab, part of the Energy Initiative at Duke.

David Clancy, a Stats/Math/EnvSci major, and Tianyi Mu, an ECE/CompSci major, spent ten weeks studying the effects of weather, surroundings, and climate on the operational behavior of water reservoirs across the United States. They used a large dataset compiled by the U.S. Army Corps of Engineers, and they worked closely with Lauren Patterson from the Water Policy Program at Duke's Nicholas Institute for Environmental Policy Solutions. Project mentorship was provided by Alireza Vahid, a postdoctoral candidate in Electrical Engineering.

Devri Adams (Environmental Science), Annie Lott (Statistics), and Camila Vargas Restrepo (Visual Media Studies, Psychology) spent ten weeks creating interactive and exploratory visualizations of ecological data. They worked with over sixty years of data collected at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire.

Graduate Students: Kendra Kaiser and John Mallard

Faculty: Michael O’Driscoll

Course: Landscape Hydrology, EOS 323/723

Boning Li (Masters Electrical and Computer Engineering), Ben Brigman (Electrical and Computer Engineering), Gouttham Chandrasekar (Electrical and Computer Engineering), Shamikh Hossain (Computer Science, Economics), and Trishul Nagenalli (Electrical and Computer Engineering, Computer Science) spent ten weeks creating datasets of electricity access indicators that can be used to train a classifier to detect electrified villages. This coming academic year, a Bass Connections Team will use these datasets to automatically find power plants and map electricity infrastructure.

William Willis (Mechanical Engineering, Physics) and Qitong Gao (Masters Mechanical Engineering) spent ten weeks with the goal of mapping the ocean floor autonomously with high resolution and high efficiency. Their efforts were part of a team taking part in the Shell Ocean Discovery XPRIZE, and they made extensive use of simulation software built from Bellhop, an open-source program distributed by HLS Research.

Joy Patel (Math and CompSci) and Hans Riess (Math) spent ten weeks analyzing massive amounts of simulated weather data supplied by Spectral Sciences Inc. Their goal was to investigate ways in which advanced mathematical techniques could assist in quantifying storm intensity, helping to augment today's more qualitatively-based methods.

The team built a ground truth dataset comprising satellite images, building footprints, and building heights (LIDAR) of 40,000+ buildings, along with road annotations. This dataset can be used to train computer vision algorithms to determine a building’s volume from an image, and is significant contribution to the broader research community with applications in urban planning, civil emergency mitigation and human population estimation.

Computer Science majors Erin Taylor and Ian Frankenburg, along with Math major Eric Peshkin, spent ten weeks understanding how geometry and topology, in tandem with statistics and machine-learning, can aid in quantifying anomalous behavior in cyber-networks. The team was sponsored by Geometric Data Anaytics, Inc., and used real anonymized Netflow data provided by Duke's Information Technology Security Office.

Graduate student: Hamza Ghadyali          

Faculty instructor: Dr. Paul Bendich

Molly Rosenstein, an Earth and Ocean Sciences major and Tess Harper, an Environmental Science and Spanish major spent ten weeks developing interactive data applications for use in Environmental Science 101, taught by Rebecca Vidra.