Research

Research projects at iiD focus on building connections. We encourage crosspollination of ideas across disciplines, and to develop new forms of collaboration that will advance research and education across the full spectrum of disciplines at Duke. The topics below show areas of research focus at iiD. See all of our research.

Large publicly available environmental databases are a tremendous resource for both scientists and the general public interested in climate trends and properties. However, without the programming skills to parse and interpret these massive datasets, significant trends may remain hidden from both scientists and the public. In this data exploration, students, over the course of three hours, accessed two large, publicly available datasets, each with greater than 4 million observations. They learned how to use R and RStudio to effectively organize, visualize and statistically explore trends in deep sea physical oceanography.  

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Varun Nair (Mechanical Engineering), Tamasha Pathirathna (Computer Science), Xiaolan You (Computer Science/Statistics), and Qiwei Han (Chemistry) spent ten weeks creating a ground-truthed dataset of electricity infrastructure that can be used to automatically map the transmission and distribution components of the electric power grid. This is the first publicly available dataset of its kind, and will be analyzed during the academic year as part of a Bass Connections team.

Click here to read the Executive Summary

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

Understanding of how to manipulate, analyze, and display large datasets is an essential skill in the life sciences. Introducing students to the concepts of coding languages and showing them the diversity of tasks that can be accomplished using a flexible coding scheme like R is an important step in the training of any life sciences professional. For students taking lab-based courses, who are often required to analyze the datasets they produce in class, learning these techniques can be helpful both in the short-term (i.e., during the semester) and for their future careers.

Sophie Guo, Math/PoliSci major, Bridget Dou, ECE/CompSci major, Sachet Bangia, Econ/CompSci major, and Christy Vaughn spent ten weeks studying different procedures for drawing congressional boundaries, and quantifying the effects of these procedures on the fairness of actual election results.

Anna Vivian (Physics, Art History) and Vinai Oddiraju (Stats) spent ten weeks working closely with the director of the Durham Neighborhood Compass. Their goal was to produce metrics for things like ambient stress and neighborhood change, to visualize these metrics within the Compass system, and to interface with a variety of community stakeholders in their work.

Sharrin ManorArjun DevarajanWuming Zhang, and Jeffrey Perkins explored a lage collection of imagery data provided by the U.S. Geological Survey, with the goal of identifying solar panels using image recognition. They worked closely with the Energy Data Analytics Lab, part of the Energy Initiative at Duke.

ECE majors Mitchell Parekh and Yehan (Morton) Mo, along with IIT student Nikhil Tank, spent ten weeks understanding parking behavior at Duke. They worked closely with the Parking and Transportation Office, as well as with Vice President for Administration Kyle Cavanaugh.

David Clancy, a Stats/Math/EnvSci major, and Tianyi Mu, an ECE/CompSci major, spent ten weeks studying the effects of weather, surroundings, and climate on the operational behavior of water reservoirs across the United States. They used a large dataset compiled by the U.S. Army Corps of Engineers, and they worked closely with Lauren Patterson from the Water Policy Program at Duke's Nicholas Institute for Environmental Policy Solutions. Project mentorship was provided by Alireza Vahid, a postdoctoral candidate in Electrical Engineering.

Devri Adams (Environmental Science), Annie Lott (Statistics), and Camila Vargas Restrepo (Visual Media Studies, Psychology) spent ten weeks creating interactive and exploratory visualizations of ecological data. They worked with over sixty years of data collected at the Hubbard Brook Experimental Forest (HBEF) in New Hampshire.

Graduate Students: Kendra Kaiser and John Mallard

Faculty: Michael O’Driscoll

Course: Landscape Hydrology, EOS 323/723

Boning Li (Masters Electrical and Computer Engineering), Ben Brigman (Electrical and Computer Engineering), Gouttham Chandrasekar (Electrical and Computer Engineering), Shamikh Hossain (Computer Science, Economics), and Trishul Nagenalli (Electrical and Computer Engineering, Computer Science) spent ten weeks creating datasets of electricity access indicators that can be used to train a classifier to detect electrified villages. This coming academic year, a Bass Connections Team will use these datasets to automatically find power plants and map electricity infrastructure.

William Willis (Mechanical Engineering, Physics) and Qitong Gao (Masters Mechanical Engineering) spent ten weeks with the goal of mapping the ocean floor autonomously with high resolution and high efficiency. Their efforts were part of a team taking part in the Shell Ocean Discovery XPRIZE, and they made extensive use of simulation software built from Bellhop, an open-source program distributed by HLS Research.

Joy Patel (Math and CompSci) and Hans Riess (Math) spent ten weeks analyzing massive amounts of simulated weather data supplied by Spectral Sciences Inc. Their goal was to investigate ways in which advanced mathematical techniques could assist in quantifying storm intensity, helping to augment today's more qualitatively-based methods.

The team built a ground truth dataset comprising satellite images, building footprints, and building heights (LIDAR) of 40,000+ buildings, along with road annotations. This dataset can be used to train computer vision algorithms to determine a building’s volume from an image, and is significant contribution to the broader research community with applications in urban planning, civil emergency mitigation and human population estimation.

Computer Science majors Erin Taylor and Ian Frankenburg, along with Math major Eric Peshkin, spent ten weeks understanding how geometry and topology, in tandem with statistics and machine-learning, can aid in quantifying anomalous behavior in cyber-networks. The team was sponsored by Geometric Data Anaytics, Inc., and used real anonymized Netflow data provided by Duke's Information Technology Security Office.

Graduate student: Hamza Ghadyali          

Faculty instructor: Dr. Paul Bendich

Molly Rosenstein, an Earth and Ocean Sciences major and Tess Harper, an Environmental Science and Spanish major spent ten weeks developing interactive data applications for use in Environmental Science 101, taught by Rebecca Vidra.