Research projects at iiD focus on building connections. We encourage crosspollination of ideas across disciplines, and to develop new forms of collaboration that will advance research and education across the full spectrum of disciplines at Duke. The topics below show areas of research focus at iiD. See all of our research.

This Data Expedition introduced hypothesis-driven data analysis in R and the concept of circular data, while providing some tools for importing it and analyzing it in R.

David Liu (Electrical Computer Engineering) and Connie Wu (Computer Science/Statistics) spent ten weeks analyzing data about walking speed from the 6th Vital Sign Study.

Integrating study data with public data from the American Community Survey, they built interactive visualization tools that will help researchers understand the study results and the representativeness of study participants.

Click here to read the Executive Summary

Kimberly Calero (Public Policy/Biology/Chemistry), Alexandra Diaz (Biology/Linguistics), and Cary Shindell (Environmental Engineering) spent ten weeks analyzing and visualizing data about disparities in Social Determinants of Health. Working with data provided by the MURDOCK Study, the American Community Survey, and the Google Places API, the team built a dataset and visualization tool that will assist the MURDOCK research team in exploring health outcomes in Cabarrus County, NC.

Click here to read the Executive Summary

Alexandra Putka (Biology/Neuroscience), John Madden (Economics), and Lucy St. Charles (Global Health/Spanish) spent ten weeks understanding the coverage and timeliness of maternal and pediatric vaccines in Durham. They used data from DEDUCE, the American Community Survey, and the CDC.

This project will continue into the academic year via Bass Connections.

Click here to read the Executive Summary

Dima Fayyad (Electrical & Computer Engineering), Sean Holt (Math), David Rein (Computer Science/Math) spent ten weeks exploring tools that will operationalize the application of distributed computing methodologies in the analysis of electronic medical records (EMR) at Duke.

As a case study, they applied these systems to an Natural Language Processing project on clinical narratives about growth failure in premature babies.

Click here to read the Executive Summary

Zhong Huang (Sociology) and Nishant Iyengar (Biomedical Engineering) spent ten weeks investigating the clinical profiles of rare metabolic diseases. Working with a large dataset provided by the Duke University Health System, the team used natural language processing techniques and produced an R Shiny visualization that enables clinicians to interactively explore diagnosis clusters.

Click here to read the Executive Summary

Samantha Garland (Computer Science), Grant Kim (Computer Science, Electrical & Computer Engineering), and Preethi Seshadri (Data Science) spent ten weeks exploring factors that influence patient choices when faced with intermediate-stage prostate cancer diagnoses. They used topic modeling in an analysis of a large collection of clinical appointment transcripts.

Click here for the Executive Summary

Jennie Wang (Economics/Computer Science) and Blen Biru (Biology/French) spent ten weeks building visualizations of various aspects of the lives of orphaned and separated children at six separate sites in Africa and Asia. The team created R Shiny interactive visualizations of data provided by the Positive Outcomes for Orphans study (POFO).

Click here to read the Executive Summary

Melanie Lai Wai (Statistics) and Saumya Sao (Global Health, Gender Studies) spent ten weeks developing a platform which enables users to understand factors that influence contraceptive use and discontinuation. Their work combined data from the Demographic and Health Surveys contraceptive calendar with open data about reproductive health and social indicators from the World Bank, World Health Organization, and World Population Prospects. This project will continue into the academic year via Bass Connections.

Click here to read the Executive Summary

Bob Ziyang Ding (Math/Stats) and Daniel Chaofan Tao (ECE) spent ten weeks understanding how deep learning techniques can shed light on single cell analysis. Working with a large set of single-cell sequencing data, the team built an autoencoder pipeline and a device that will allow biologists to interactively visualize their own data.

Click here to read the Executive Summary

Tatanya Bidopia (Psychology, Global Health), Matthew Rose (Computer Science), Joyce Yoo (Public Policy/Psychology) spent ten weeks doing a data-driven investigation of the relationship between mental health training of law enforcement officers and key outcomes such as incarceration, recidivism, and referrals for treatment. They worked closely with the Crisis Intervention Team, and they used jail data provided by the Sheriff’s Office of Durham County.

Click here to read the Executive Summary


The aim of this Data Expedition was for students to learn hands-on data visualization techniques using a variety of data types. Students first discussed how data visualization is useful, and tips to make graphs both visually appealing and easy to understand. 

Anna Vivian (Physics, Art History) and Vinai Oddiraju (Stats) spent ten weeks working closely with the director of the Durham Neighborhood Compass. Their goal was to produce metrics for things like ambient stress and neighborhood change, to visualize these metrics within the Compass system, and to interface with a variety of community stakeholders in their work.

Maddie Katz (Global Health and Evolutionary Anthropology Major), Parker Foe (Math/Spanish, Smith College), and Tony Li (Math, Cornell) spent ten weeks analyzing data from the National Transgender Discrimination Survey. Their goal was to understand how the discrimination faced by the trans community is realized on a state, regional, and national level, and to partner with advocacy organizations around their analysis.

Computer Science major Yumin Zhang and IIT student Akhil Kumar Pabbathi spent ten weeks working closely with Dr. Joe McClernon from Psychiatry and Behavioral Sciences to understand smoking and tobacco purchase behavior through activity space analysis.

Biomedical Engineering and Electrical and Computer Engineering major David Brenes, and Electrical and Computer Engineering/Computer Science majors Xingyu Chen and David Yang spent ten weeks working with mobile eye tracker data to optimize data processing and feature extraction. They generated their own video data with SMI Eye Tracking Glasses, and created computer vision algorithms to categorize subject gazing behavior in a grocery purchase decision-making environment.

Biomedical Engineering major Chi Kim Trinh, and Biostatistics MS student Can Cui spent ten weeks constructing a computational and statistical framework to evaluate the effects of health coaching on Type II Diabetes patients’ quality metrics, including Hemoglobin A1c, blood pressure, eye exam consistency, tobacco use, and prescription adherence to statins, aspirin, and angiotensin converter enzyme (ACE)/ angiotensin receptor blocker (ARB).

Ana Galvez (Cultural and Evolutionary Anthropology), Xinyu Li (Biology), and Jonathan Rub (Math, Computer Science) spent ten weeks studying the impact of diet on organ and bone growth in developing laboratory rats. The goal was to provide insight into the growth dynamics of these model organisms that could eventually be generalized to inform research on human development.

Robbie Ha (Computer Science, Statistics), Peilin Lai  (Computer Science, Mathematics), and Alejandro Ortega (Mathematics) spent ten weeks analyzing the content and dissemination of images of the Syrian refugee crisis, as part of a general data-driven investigation of Western photojournalism and how it has contributed to our understanding of this crisis.

A team of students led by Duke mathematician Marc Ryser and University of Southern California Pathology professor Darryl Shibata will characterize phenotypic evolution during the growth of human colorectal tumors. 

Over ten weeks, Computer Science Majors Amber Strange and Jackson Dellinger joined forces with Psychology major Rachel Buchanan to perform a data-driven analysis of mental health intervention practices by Durham Police Department. They worked closely with leadership from the Durham Crisis Intervention Team (CIT) Collaborative, made up of officers who have completed 40 hours of specialized training in mental illness and crisis intervention techniques.

Over ten weeks, Computer Science majors Daniel Bass-Blue and Susie Choi joined forces with Biomedical Engineering major Ellie Wood to prototype interactive interfaces from Type II diabetics' mobile health data. Their specific goals were to encourage patient self-management and to effectively inform clinicians about patient behavior between visits.

A team of students led by Dr. Shanna Sprinkle of Duke Surgery will combine success metrics of Duke Surgery residents from a set of databases and create a user interface for residency program directors and possibly residents themselves to view and better understand residency program performance.

Lauren Fox (Cultural Anthropology) and Elizabeth Ratliff (Statistics, Global Health) spent ten weeks analyzing and mapping pedestrian, bicycle, and motor vehicle data provided by Durham's Department of Transportation. This project was a continuation of a seminar on "ghost bikes" taught by Prof. Harris Solomon.

Felicia Chen (Computer Science, Statistics), Nikkhil Pulimood (Computer Science, Mathematics), and James Wang (Statistics, Public Policy) spent ten weeks working with Counter Tools, a local nonprofit that provides support to over a dozen state health departments. The project goal was to understand how open source data can lead to the creation of a national database of tobacco retailers.

Over ten weeks, BME and ECE majors Serge Assaad and Mark Chen joined forces with Mechanical Engineering Masters student Guangshen Ma to automate the diagnosis of vascular anomalies from Doppler Ultrasound data, with goals of improving diagnostic accuracy and reducing physician time spent on simple diagnoses. They worked closely with Duke Surgeon Dr. Leila Mureebe and Civil and Environmental Engineering Professor Wilkins Aquino.

Angelo Bonomi (Chemistry), Remy Kassem (ECE, Math), and Han (Alessandra) Zhang (Biology, CompSci) spent ten weeks analyzing data from social networks for communities of people facing chronic conditions. The social network data, provided by MyHealth Teams, contained information shared by community members about their diagnoses, symptoms, co-morbidities, treatments, and details about each treatment.

Furthering the work of a 2016 Data+ team in predictive modeling of pancreatic cancer from electronic medical record (EMR) data, students Siwei Zhang (Masters Biostatistics) and Jake Ukleja (Computer Science) spent ten weeks building a model to predict pancreatic cancer from Electronic Medical Records (EMR) data. They worked with nine years worth of EMR data, including ICD9 diagnostic codes, that contained records from over 200,000 patients.

Gary Koplik (Masters in Economics and Computation) and Matt Tribby (CompSci, Statistics) spent ten weeks investigating the burden of rare diseases on the Duke University Health System (DUHS). They worked with a massive set of ICD diagnosis codes and visit data provided by DUHS.

Over ten weeks, Biology major Jacob Sumner and Neuroscience major Julianna Zhang joined forces with Biostatistics Masters student Jing Lyu to analyze potential drug diversion in the Duke Medical Center. Early detection of drug diversion assists health care providers in helping patients recover from their condition, as well as mitigate the effects on any patients under their care.

Albert Antar(Biology), and Zidi Xiu (Biostatistics) spent ten weeks leveraging Duke Electronic Medical Record (EMR) data to build predictive models of Pancreatic ductal adenocarcinoma (PDAC). PDAC is the 4th leading cause of cancer deaths in the US, and is most often is diagnosed in stage IV, with a survival rate of only 1% and life expectancy measured in months. Diagnosis of PDAC is very challenging due of deep anatomical placement, and significant risk imposed by traditional biopsy. The goal of this project is to utilize EMR data to identify potential avenues for diagnosing PDAC in the early treatable stages of disease.

Computer Science and Psychology major Molly Chen, and Neuroscience major Emily Wu spent ten weeks working with patient diagnosis co-occurence data derived from Duke Electronic Medical Records to develop network visualizations of co-occurring disorders within demographic groups. Their goal was to make healthcare more holistic, and reduce healthcare disparities by improving patient and provider awareness of co-occurring disorders for patients within similar demographic groups.

Priya Sarkar (Computer Science), Lily Zerihun (Biology and Global Health), and Anqi Zhang (Biostatistics) spent ten weeks utilizing Duke Electronic Medical Record (EMR) data to identify subgroups of diabetic patients, and predict future complications associated with Type II Diabetes.

Vivek Sriram (Computer Science and Math), Lina Yang (Biostatistics), and Pablo Ortiz (BME) spent ten weeks working in close collaboration with the Department of Biostatistics and Bioinformatics implementing an image analysis pipeline for immunofluorescence microscopy images of developing mouse lungs.

Statistical Science majors Nathaniel Brown and Corey Vernot, and Economics student Guan-Wun Hao spent ten weeks exploring changes in food purchase behavior and nutritional intake following the event of a new Metformin prescription for Type II Diabetes. They worked closely with Matthew Harding and researchers in the BECR Center, as well as Dr. Susan Spratt, an endocrinologist in Duke Medicine.

Anne Driscoll (Economics, Statistical Science), and Austin Ferguson (Math, Physics) spent ten weeks examining metrics for inter-departmental cooperativity and productivity, and developing a collaboration network of Duke faculty. This project was sponsored by the Duke Clinical and Translational Science Award, with the larger goal of promoting collaborative success in the School of Medicine and School of Nursing.

Joel Tewksbury (BME) and Miriam Goldman (Math and Statistics, Arizona State University) spent ten weeks analyzing time-series darkness visual adaptation scores from over 1200 study participants to identify trends in night vision, and ultimately genetic markers that might confer a visual advantage.

Lindsay Hirschhorn (Mechanical Engineering) and Kelsey Sumner (Global Health and Evolutionary Anthropology) spent ten weeks determining optimal vaccination clinic locations in Durham County for a simulated Zika virus outbreak. They worked closely with researchers at RTI International to construct models of disease spread and health impact, and developed an interactive visualization tool.

With the significant international consequences of recent outbreaks, the ITP Lab conducted extensive stakeholder interviews and macro-level health policy analysis to expose gaps in pandemic preparedness and develop legal frameworks for future threats. 

Paclitaxel (Taxol) is a small molecule drug belonging to the taxane family. It is one of the most commonly used chemotherapeutics, used for treatment of many cancers, as a monotherapy or in combination with other drugs to treat breast, lung and ovarian cancer as well as Kaposi’s sarcoma. Taxol is on the World Health Organization’s (WHO) List of Essential Medicines, a list that includes most the important medications for basic health. The worldwide demand for paclitaxel is exceeding the current supply. 

With the significant international consequences of recent outbreaks, the ITP Lab conducted extensive stakeholder interviews and macro-level health policy analysis to expose gaps in pandemic preparedness and develop legal frameworks for future threats. 

This project summarizes the existing sample agreements from different institutions, analyzes the key contractual issues in the formation of alliances, and develops master charts of legal provisions to compare different approaches, to provide a reference for the formation of new alliances in the era of epidemic disease outbreaks. 

Two to three undergraduates joined a research group led by Douglas Boyer and Ingrid Daubechies, with the goal of testing and developing mathematical and statistical methodology for measuring similarities between bones and teeth.

Kelsey SumnerEvAnth and Global Health major and Christopher Hong, CompSci/ECE major, spent ten weeks analyzing high-dimensional microRNA data taken from patients with viral and/or bacterial conditions. They worked closely with the medical faculty and practitioners who generated the data.