What makes a good reservoir?

Project Summary

David Clancy, a Stats/Math/EnvSci major, and Tianyi Mu, an ECE/CompSci major, spent ten weeks studying the effects of weather, surroundings, and climate on the operational behavior of water reservoirs across the United States. They used a large dataset compiled by the U.S. Army Corps of Engineers, and they worked closely with Lauren Patterson from the Water Policy Program at Duke's Nicholas Institute for Environmental Policy Solutions. Project mentorship was provided by Alireza Vahid, a postdoctoral candidate in Electrical Engineering.

Themes and Categories
Year
2015
Contact
Paul Bendich
bendich@math.duke.edu

Project Results

Using sophisticated statistical machinery, the team showed that greater forestation and less-dense development increases the influence of rain on a reservoir. They also proposed a novel way to identify and characterize extreme reservoir events.

David explains the project at the Data+ poster session

Download the executive summary (PDF).

Disciplines Involved

  • Environmental Science
  • Statistics

Project Team

Undergraduates: Tianyi Mu and David Clancy

Faculty Lead: Martin Doyle

Client Lead: Lauren Patterson, Water Policy Program Policy Associate

Lead mentor: Alireza Vahid, post-doc, ECE

Graduate mentor: Hamza Ghadyali graduate student, Mathematics

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh