Visualizing Suffering: Tracking Photojournalism and the Syrian Refugee Crisis

Project Summary

Robbie Ha (Computer Science, Statistics), Peilin Lai  (Computer Science, Mathematics), and Alejandro Ortega (Mathematics) spent ten weeks analyzing the content and dissemination of images of the Syrian refugee crisis, as part of a general data-driven investigation of Western photojournalism and how it has contributed to our understanding of this crisis.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team gathered images and metadata from an AP database and used reverse Google image search to track which news agencies used each photo.

They found that the number of published images source from a particular country is in no way proportional to the number of refugees housed by that country. In addition, they observed that images published from Western European countries often depicted political protests and refugees in large groups, while images published from Middle Eastern countries often portrayed individuals and refugee camps. This finding, along with many other interesting observations, is summarized on a team-designed website.

Click here for the Executive Summary

Faculty Lead: Astrid Giugni

Project Manager: Jessica Hines

Room 351: Sharing Project Space and Coding

Related People

Related Projects

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm.

Click here for the Executive Summary

Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends.

They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm.

Click here to read the Executive Summary