Visualizing Suffering: Tracking Photojournalism and the Syrian Refugee Crisis

Project Summary

Robbie Ha (Computer Science, Statistics), Peilin Lai  (Computer Science, Mathematics), and Alejandro Ortega (Mathematics) spent ten weeks analyzing the content and dissemination of images of the Syrian refugee crisis, as part of a general data-driven investigation of Western photojournalism and how it has contributed to our understanding of this crisis.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Center for Applied Genomics and Precision Medicine
ashlee.valente@duke.edu

Project Results: The team gathered images and metadata from an AP database and used reverse Google image search to track which news agencies used each photo.

They found that the number of published images source from a particular country is in no way proportional to the number of refugees housed by that country. In addition, they observed that images published from Western European countries often depicted political protests and refugees in large groups, while images published from Middle Eastern countries often portrayed individuals and refugee camps. This finding, along with many other interesting observations, is summarized on a team-designed website.

Click here for the Executive Summary

Faculty Lead: Astrid Giugni

Project Manager: Jessica Hines

Room 351: Sharing Project Space and Coding

Related People

Related Projects

A team of students, led by Electrical and Computer Engineering professor Vahid Tarokh, will develop methods to improve the efficiency of information processing with adaptive decisions according to the structure of new incoming data. Students will have the opportunity to explore data-driven adaptive strategies based on neural networks and statistical learning models, investigate trade-offs between error threshold and computational complexity for various fundamental operations, and implement software prototypes. The outcome of this project can potentially speed up many systems and networks involving data sensing, acquisition, and computation.

Project Leads: Yi Feng, Vahid Tarokh

A team of students will explore new ways of reading pre-modern maps and perspectival views through image tagging, annotation and 3D modeling. Each student will build a typology of icons found in these early maps (for example, houses, churches, roads, rivers, etc.). By extracting, modeling, and cataloging these features, the team will create a library of 2D and 3D objects that will be used to (a) identify patterns in how space and power are represented across these maps, and (b) to create a model for “experiencing” these maps in 3D, using the Unity game engine platform. This is a combined Data+ / Bass Connections project that will instruct students in qualitative and quantitative mapping techniques, basic 3D modeling and the history of cartography.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

A team of students will explore ways in which data science can help support the mission of Rewriting the Code, a national non-profit organization dedicated to empowering a community of college women with a passion for technology.

In particular, students will perform statistical analyzes of past survey data, build out interactive dashboards that help visualize trends in student experience, and help design future survey questions.

Project Lead: Sue Harnett

Faculty Lead: Alexandra Cooper

Project Manager: Imari Smith