Sub-thalamic nucleus (STN) location prediction based on ultra high-field MRI statistical shape relationships

Project Summary

The sub-thalamic nucleus (STN) within the sub-cortical region of the Basal ganglia is a crucial targeting structure for Deep brain stimulation (DBS) surgery, in particular for alleviating Parkinson’s disease (PD) symptoms. Volumetric segmentation of such small and complex structure, which is elusive in clinical MRI protocols, is thereby a pre-requisite process for reliable DBS targeting. While direct visualization and localization of the STN is facilitated with advanced high-field 7T MR imaging, such high fields are not always clinically available. 

Themes and Categories
Year

In this work, we focus on the automatic shape prediction of the STN, exploiting the spatial dependency of the STN on its adjacent structures as predictors, some of which are easy to visualize and localize with standard clinical procedures. Variation modes of the STN and its predictors on five high-quality training sets obtained from 7T MR imaging are first captured using a statistical shape model. We then exploit the partial least squares regression (PLSR) method to induce the spatial relationship between the STN and its predictors. Prediction accuracy is evaluated by measuring the shape similarity and the errors in position, size, and orientation between manually segmented STN and its predicted one. Experimental results demonstrate that the proposed approach enables accurate shape and pose prediction of the STN, critical for Parkinson’s DBS, on 7T MR and on clinical 1.5T MR imaging using the spatial relationship between STNs and its predictors.

Related People

Related Projects

Simi Bleznak (Math/AI), Max Brown (Math/Econ), and Julia Choi (Bio) spent ten weeks Exploring how visual, cognitive, and physical abilities relate to physical performance can provide insight into the development of athletes. Using two rich datasets provided by USA Baseball, the team used linear regression, logistic regression models, and longitudinal methods to deliver key insights to decision-makers. This project was a continuation of a Data+ project from last summer: https://bigdata.duke.edu/projects/predicting-baseball-players%E2%80%99-athletic-performance

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Leads: Marc Richard, Suhail Mithani, Greg Appelbaum

Project Mangers: Billy Carson and Hunter Klein

Volumetric segmentation of sub-cortical structures such as the basal ganglia and thalamus is necessary for non-invasive diagnosis and neurosurgery planning. This is a challenging problem due in part to limited boundary information between structures, similar intensity profiles across the different structures, and low contrast data.