Satellite Tagging Records of Deep Divers off Cape Hatteras, North Carolina

Project Summary

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

Themes and Categories
Year
2017

Graduate Students: Jillian Wisse, University Program in Ecology; Vivienne Foroughirad, Marine Science & Conservation

Faculty: Dr. Andrew Read

Course: Biology of Marine Animals, Biology 376A, ENVIRON 376A & Environ 776A 

This dataset includes 30 satellite-linked tags deployed by Duke Marine Lab researchers between 2014 and 2017 as part of the US Navy Marine Species Monitoring Program. Students used these data to explore comparative diving behavior between two deep-diving species off the North Carolina coast, short-finned pilot whales (Globicephala macrorhynchus) and Cuvier’s beaked whale (Ziphius cavirostris). Beaked whales are the deepest divers of all mammals, with recorded dives of almost 3000 meters, and are especially enigmatic, spending up to 95% of their time below the ocean surface. 

Exercises

  • Pre-process satellite tag data to remove corrupted records and identify gaps.
  • Plot dive profiles for individual pilot whales and beaked whales.
  • Calculate summary statistics for dive depths and durations.
  • Compare plots of dive distributions for each species. 

Techniques

  • R & RStudio – Import data from excel and csv files
  • Parse data and properly format data types
  • Visualize dive data in dive profile plots
  • Calculate summary statistics
  • Plot line graphs and scatterplots 

Downloads

An Introduction to Data Analysis with R (PDF)

Project slides (PDF)

Simulated code

Simulated data set

Related Projects

In this two-day, virtual data expedition project, students were introduced to the APIM in the context of stress proliferation, linked lives, the spousal relationship, and mental and physical health outcomes.

Stress proliferation is a concept within the stress process paradigm that explains how one person’s stressors can influence others (Thoits 2010). Combining this with the life course principle of linked lives explains that because people are embedded in social networks, stress not only can impact the individual but can also proliferate to people close to them (Elder Jr, Shanahan and Jennings 2015). For example, one spouse’s chronic health condition may lead to stress-provoking strain in the marital relationship, eventually spilling over to affect the other spouse’s mental health. Additionally, because partners share an environment, experiences, and resources (e.g., money and information), as well as exert social control over each other, they can monitor and influence each other’s health and health behaviors. This often leads to health concordance within couples; in other words, because individuals within the couple influence each other’s health and well-being, their health tends to become more similar or more alike (Kiecolt-Glaser and Wilson 2017, Polenick, Renn and Birditt 2018). Thus, a spouse’s current health condition may influence their partner’s future health and spouses may contemporaneously exhibit similar health conditions or behaviors.

However, how spouses influence each other may be patterned by the gender of the spouse with the health condition or exhibiting the health behaviors. Recent evidence suggests that a wife’s health condition may have little influence on her husband’s future health conditions, but that a husband’s health condition will most likely influence his wife’s future health (Kiecolt-Glaser and Wilson 2017).

A team of students led by researchers in the BIG IDEAS lab in the biomedical engineering department will build and validate machine learning techniques to classify longitudinal illness trajectories of individuals with infections such as COVID-19 or flu. Students will construct a pipeline to query survey and wearable device data from our newly constructed database in the Microsoft Azure environment and modify existing machine learning and deep learning algorithms for wearables data analysis. This project will build upon the work accomplished by the Duke Bass Connections team and the Duke MIDS capstone project.

Project Lead: Jessilyn Dunn

A team of students led by Zackary Johnson (Associate Professor Nicholas School of the Environment and Biology) and supported by other faculty in NSOE, Statistics, Biology and Engineering, will perform analyses of a 10+ year oceanographic time‐series dataset sampled near the Duke Marine Laboratory.  With >1000 observations and >400 fields, the team will first mature the MATLAB based data wrangler and analysis scripts.  Using this enhanced tool, the team will then focus on clustering, classification and forecasting towards the interpretation of variability and trends of key variables measured by the Pivers Island Coastal Observatory.  The long term goal of this project is to understand the proximal drivers of variability in coastal marine ecosystems as well as longer term changes associated with climate change.

Project Lead: Zackary Johnson