Satellite Tagging Records of Deep Divers off Cape Hatteras, North Carolina

Project Summary

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

Themes and Categories
Year
2017

Graduate Students: Jillian Wisse, University Program in Ecology; Vivienne Foroughirad, Marine Science & Conservation

Faculty: Dr. Andrew Read

Course: Biology of Marine Animals, Biology 376A, ENVIRON 376A & Environ 776A 

This dataset includes 30 satellite-linked tags deployed by Duke Marine Lab researchers between 2014 and 2017 as part of the US Navy Marine Species Monitoring Program. Students used these data to explore comparative diving behavior between two deep-diving species off the North Carolina coast, short-finned pilot whales (Globicephala macrorhynchus) and Cuvier’s beaked whale (Ziphius cavirostris). Beaked whales are the deepest divers of all mammals, with recorded dives of almost 3000 meters, and are especially enigmatic, spending up to 95% of their time below the ocean surface. 

Exercises

  • Pre-process satellite tag data to remove corrupted records and identify gaps.
  • Plot dive profiles for individual pilot whales and beaked whales.
  • Calculate summary statistics for dive depths and durations.
  • Compare plots of dive distributions for each species. 

Techniques

  • R & RStudio – Import data from excel and csv files
  • Parse data and properly format data types
  • Visualize dive data in dive profile plots
  • Calculate summary statistics
  • Plot line graphs and scatterplots 

Downloads

An Introduction to Data Analysis with R (PDF)

Project slides (PDF)

Simulated code

Simulated data set

Related Projects

A large and growing trove of patient, clinical, and organizational data is collected as a part of the “Help Desk” program at Durham’s Lincoln Community Health Center. Help Desk is a group of student volunteers who connect with patients over the phone and help them navigate to community resources (like food assistance programs, legal aid, or employment centers). Data-driven approaches to identifying service gaps, understanding the patient population, and uncovering unseen trends are important for improving patient health and advocating for the necessity of these resources. Disparities in food security, economic stability, education, neighborhood and physical environment, community and social context, and access to the healthcare system are crucial social determinants of health, which studies indicate account for nearly 70% of all health outcomes.

We led a 75-minute class session for the Marine Mammals course at the Duke University Marine Lab that introduced students to strengths and challenges of using aerial imagery to survey wildlife populations, and the growing use of machine learning to address these "big data" tasks.

Most phenomena that data scientists seek to analyze are either spatially or temporally correlated. Examples of spatial and temporal correlation include political elections, contaminant transfer, disease spread, housing market, and the weather. A question of interest is how to incorporate the spatial correlation information into modeling such phenomena.

 

In this project, we focus on the impact of environmental attributes (such as greenness, tree cover, temperature, etc.) along with other socio-demographics and home characteristics on housing prices by developing a model that takes into account the spatial autocorrelation of the response variable. To this aim, we introduce a test to diagnose spatial autocorrelation and explain how to integrate spatial autocorrelation into a regression model

 

 

In this data exploration, students are provided with data collected from remote sensing, census, and Zillow sources. Students are tasked with conducting a regression analysis of real-estate estimates against environmental amenities and other control variables which may or may not include the spatial autocorrelation information.