Satellite Tagging Records of Deep Divers off Cape Hatteras, North Carolina

Project Summary

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface. 

Themes and Categories
Year
2017

Graduate Students: Jillian Wisse, University Program in Ecology; Vivienne Foroughirad, Marine Science & Conservation

Faculty: Dr. Andrew Read

Course: Biology of Marine Animals, Biology 376A, ENVIRON 376A & Environ 776A 

This dataset includes 30 satellite-linked tags deployed by Duke Marine Lab researchers between 2014 and 2017 as part of the US Navy Marine Species Monitoring Program. Students used these data to explore comparative diving behavior between two deep-diving species off the North Carolina coast, short-finned pilot whales (Globicephala macrorhynchus) and Cuvier’s beaked whale (Ziphius cavirostris). Beaked whales are the deepest divers of all mammals, with recorded dives of almost 3000 meters, and are especially enigmatic, spending up to 95% of their time below the ocean surface. 

Exercises

  • Pre-process satellite tag data to remove corrupted records and identify gaps.
  • Plot dive profiles for individual pilot whales and beaked whales.
  • Calculate summary statistics for dive depths and durations.
  • Compare plots of dive distributions for each species. 

Techniques

  • R & RStudio – Import data from excel and csv files
  • Parse data and properly format data types
  • Visualize dive data in dive profile plots
  • Calculate summary statistics
  • Plot line graphs and scatterplots 

Downloads

An Introduction to Data Analysis with R (PDF)

Project slides (PDF)

Simulated code

Simulated data set

Related Projects

This data expeditions module used three full course sessions to introduce undergraduate hydrology students with minimal programming background to:

  • Public water data (water quantity and chemistry)

  • Spatial analysis of water data

  • 2 core, spatial datasets produced by the USGS that enable spatial analysis

  • The programming language R

  • R based tools for water data

  • Spatial analysis and maps in R

Exposure to local pathogens is a significant selective pressure on the human genome: the strongest selective forces identified in modern human populations are for mutations that confer increased resistance to malaria infection. Understanding how human genetic variation impacts susceptibility to pathogens can reveal important aspects of disease biology and reveal novel treatment targets. By using genome-wide association of infection-related cellular traits, we can connect human genetic variation to disease susceptibility in a controlled laboratory environment. Identification of the variants, genes, and cellular pathways involved in infectious disease pathogenesis can inform host-directed therapeutics, clinically effective risk stratification, and epidemiological prediction. This data expedition explores the effect of host genetic variation on chemokine response to Chlamydia infection.

How does human habitation relate to patterns in the natural environment? How do species respond to the presence of, and changes in, habitation? In this Data Expedition, students make use of public datasets from the Census and the Global Biodiversity Information Facility to examine relationships between individual species and human settlements. Students develop introductory skills in spatial data manipulation and visualization in R, exposure to powerful datasets and tools, and critical thinking skills in assessing dataset quality and bias.