Queens of Antiquity

Project Summary

Understanding how to generate, analyze, and work with datasets in the humanities is often a difficult task without learning how to code or program. In humanities centered courses, we often privilege close reading or qualitative analysis over other methods of knowing, but by learning some new quantitative techniques we better prepare the students to tackle new forms of reading. This class will work with the data from the HathiTrust to develop ideas for thinking about how large groups and different discourse communities thought of queens of antiquity like Cleopatra and Dido.

Please refer to https://sites.duke.edu/queensofantiquity/ for more information.

Themes and Categories
Year
2018

Graduate Student: Grant Glass

Faculty: Dr. Charlotte Sussman

Course: “Queens of Antiquity” (English 390S-7; Spring 2018)

Grant Glass taught this Data Expedition activity to students in ENGL 290, a spring 2019 course aimed at undergraduates. This experience exemplified that by introducing simple “distant reading” or qualitative concepts in a humanities undergraduate classroom, students would be able to use these tools to drive new types of research questions and think about how reading can include qualitative analysis.

The goals were to give students an introduction to “distant reading,” show how data and collections are created, what algorithms we can apply to those collections, and what types of analysis we can do from the results.

Over the course of two, 1.5-hour class sessions, 10 undergraduates were given the opportunity to create their own datasets and explore the results. For the end product, students created posts to discuss how the visualizations created from their collections helped them better understand.

Guiding Questions

  • What visualization is the most useful? Why?
  • What does the visualization help you understand about the corpus? What does it obscure?
  • What research questions can you generate from the visualization?

The Dataset

Dido

Elizabeth 1

Anne

Cleopatra

In-Class Exercises

Creating Collections with Hathitrust

Understanding the Visualizations

Related People

Related Projects

A team of students led by Humanities Unbounded Fellow Eva Michelle Wheeler will explore how culturally-bound language in African-American literature and film is rendered for international audiences and will map where and into which languages these translations are occurring. Students will use a reference dataset to build and annotate a translation corpus, explore the lexical choices and translation strategies employed by translators, and conduct a macro-level analysis of the geographic and linguistic spread of these types of translations. The results of this project will bring a quantitative dimension to what has largely been a qualitative analysis and will contribute to ongoing academic conversations about language, race, and globalization.  

Project Lead: Eva Wheeler

This project allowed students in BIOL 268D (Mechanisms of Animal Behavior) to explore the relationship between estrogen, female sexual swellings, and male mating success in wild baboons using data from the Amboseli Baboon Research Project. Students learned how to use the popular R packages dplyr and ggplot2 to calculate descriptive statistics about the dataset and perform data visualization to understand and explore patterns in animal mating behavior and sexual signals.

Ecological data comes in various shapes and sizes. When conducting an ecological study, it is common to have population data (such as snail counts) and continuous sensor data (such as stream temperature with 35,000 data points collected each year!). Ecologists must reconcile data collected at different spatial and temporal scales in order to make inferences about their study systems. Luckily, there are standard practices and toolsets that ecologists use. In this data expedition, we ingest, arrange and query data collected in the field through various methods into formats that can be analyzed. We then use different plot types, data transformations and statistical tests, such that our analyses are appropriate for the type of data. We examine both field data collected by students and also large open-source datasets that can be scraped from the web and analyzed locally.

 

Each year, the Field ecology students measure physical, chemical, and biological characteristics of the Eno River. The Eno River also has been continuously monitored for numerous environmental parameters as part of the StreamPulse project (Duke and other collaborators worldwide). StreamPulse collects data from instream sensors, such as temperature and dissolved oxygen to estimate ecosystem processes such as metabolism. So, we are able to compare data collected in the field course to long term monitoring efforts.