Poverty in Writing & Images

Project Summary

Ashley Murray (Chemistry/Math), Brian Glucksman (Global Cultural Studies), and Michelle Gao (Statistics/Economics) spent 10 weeks analyzing how meaning and use of the work “poverty” changed in presidential documents from the 1930s to the present. The students found that American presidential rhetoric about poverty has shifted in measurable ways over time. Presidential rhetoric, however, doesn’t necessarily affect policy change. As Michelle Gao explained, “The statistical methods we used provided another more quantitative way of analyzing the text. The database had around 130,000 documents, which is pretty impossible to read one by one and get all the poverty related documents by brute force. As a result, web-scraping and word filtering provided a more efficient and systematic way of extracting all the valuable information while minimizing human errors.” Through techniques such as linear regression, machine learning, and image analysis, the team effectively analyzed large swaths of textual and visual data. This approach allowed them to zero in on significant documents for closer and more in-depth analysis, paying particular attention to documents by presidents such as Franklin Delano Roosevelt or Lyndon B. Johnson, both leaders in what LBJ famously called “The War on Poverty.”

Click Here for the Executive Summary

Themes and Categories
Year
2018
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Disciplines Involved: English, Literature, History, Public Policy, Political Science, all Quantitative STEM

Project Lead: Astrid Giugni

Project Manager: Nora Nunn

The documents for analysis were provided by the American Presidency Project: http://www.presidency.ucsb.edu/index.php.

In addition, this project aimed at further exploring how to better develop the link between data analysis and humanistic studies. Unlike many traditional STEM projects, the open-ended nature of this humanities project freed the students to take intellectual risks and venture into uncharted territory. Brian Glucksman found this to be an important part of the experience: “The main benefit that I felt about the open-endedness of the project was that it felt like it was impossible to fail. We had the opportunity to define the exact scope of our project, so we could never fall short of anything. It was even a little bit liberating to realize we could not do all the work that could be done from the American Presidency Project.”  

Mentored by Nora Nunn, a graduate student in the English Department with no previous computational experience, the group paid close attention to narrative and storytelling over the summer. Nora’s own research is deeply grounded in political and ethical considerations, focusing on genocide in 20th-century transnational American literature and visual cultures. This project prompted her to take a fresh look at her own work: “My experience with Data+ showed me that the humanities and data science can at times form a symbiotic relationship. In fact, in light of this realization, I now view my own research—about the life of another word with political implications (genocide)—through a different lens. How do images and language connect or disconnect? And what are the political and social implications of these findings? In the case of Poverty in Writing and Images, social issues were inextricably intertwined with statistical ones. The symbiosis of algorithms and policy, social justice and big data, humanism and STEM left me with more questions than answers. For that experience, I am grateful.” Nora’s mentorship guided the students to make some of the same connections, prompting Ashley Murray to argue that the “usefulness of an algorithm is measured by how it can actually help/aid the humans utilizing it. This project’s aim was to look at social issues, which is inherently a way of helping other humans, and we are just using algorithms to do so.”

Related People

Related Projects

In this two-day, virtual data expedition project, students were introduced to the APIM in the context of stress proliferation, linked lives, the spousal relationship, and mental and physical health outcomes.

Stress proliferation is a concept within the stress process paradigm that explains how one person’s stressors can influence others (Thoits 2010). Combining this with the life course principle of linked lives explains that because people are embedded in social networks, stress not only can impact the individual but can also proliferate to people close to them (Elder Jr, Shanahan and Jennings 2015). For example, one spouse’s chronic health condition may lead to stress-provoking strain in the marital relationship, eventually spilling over to affect the other spouse’s mental health. Additionally, because partners share an environment, experiences, and resources (e.g., money and information), as well as exert social control over each other, they can monitor and influence each other’s health and health behaviors. This often leads to health concordance within couples; in other words, because individuals within the couple influence each other’s health and well-being, their health tends to become more similar or more alike (Kiecolt-Glaser and Wilson 2017, Polenick, Renn and Birditt 2018). Thus, a spouse’s current health condition may influence their partner’s future health and spouses may contemporaneously exhibit similar health conditions or behaviors.

However, how spouses influence each other may be patterned by the gender of the spouse with the health condition or exhibiting the health behaviors. Recent evidence suggests that a wife’s health condition may have little influence on her husband’s future health conditions, but that a husband’s health condition will most likely influence his wife’s future health (Kiecolt-Glaser and Wilson 2017).

Alexa Goble (Finance) joined Econ majors Chavez Cheong and Eli Levine in a ten-week exploration of mortgage enforcement actions related to the financial crisis from earlier in this century. Using NLP techniques on mortgage data from Ohio and Massachusetts, the team validated a new experimental approach to understanding the dynamics between state regulatory agencies, mortgage lenders, brokers, and loan originators. This project was a continuation of two previous Data+ projects:

https://bigdata.duke.edu/projects/american-predatory-lending-global-financial-crisis

https://bigdata.duke.edu/projects/american-predatory-lending-and-global-financial-crisis-year-2

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Lee Reiners

Project Manager: Malcolm Smith Fraser

Stats/Sociology major Mitchelle Mojekwu joined Neuroscience majors Kassie Hamilton and Zineb Jaidi in a ten-week exploration of data relevant to an upcoming public school zone redistricting in Durham County. Using information acquired from the General Social Survey and the US Census, the team applied modern mathematical and statistical methods for generating proposed redistricting plans, with the aim of providing decision-makers with information they can use to produce school districts that are equitable and reflective of the Durham County student population.

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Faculty Lead: Greg Herschlag

Project Manager: Bernard Coles