Online Financial Behavior and the Internet of Things

Project Summary

Zijing Huang (Statistics, Finance), Artem Streltsov (Masters Economics), and Frank Yin (ECE, CompSci, Math) spent ten weeks exploring how Internet of Things (IoT) data could be used to understand potential online financial behavior. They worked closely with analytical and strategic personnel from TD Bank, who provided them with a massive dataset compiled by Epsilon, a global company that specializes in data-driven marketing.

Themes and Categories
Year
2017
Contact
Paul Bendich
Mathematics
bendich@math.duke.edu

Project Results: The team began by tying specific TD Bank products and potential products to specific financial response variables in the Epsilon data. Then, using advanced statistical and machine-learning techniques, they built models that teased out specific predictor variables, both financial and non-financial, that best illuminated relationships in the dataset. Finally, they storyboarded several potential ways to use Amazon Alexa data, or similar IoT sources, to give precisely targeted information about the relationship between a customer and these predictor variables. They finished their project with a presentation to senior leadership at TD Bank.

Click here for the Executive Summary

Project Lead: Brian Walsh

Faculty Leads: Robert CalderbankEmma RasielPaul Bendich

Project Managers: Shai GorksyBrooke Durham

 

Related People

Related Projects

Social and environmental contexts are increasingly recognized as factors that impact health outcomes of patients. This team will have the opportunity to collaborate directly with clinicians and medical data in a real-world setting. They will examine the association between social determinants with risk prediction for hospital admissions, and to assess whether social determinants bias that risk in a systematic way. Applied methods will include machine learning, risk prediction, and assessment of bias. This Data+ project is sponsored by the Forge, Duke's center for actionable data science.

Project Leads: Shelly Rusincovitch, Ricardo Henao, Azalea Kim

Project Manager: Austin Talbot

Aaron Chai (Computer Sciece, Math) and Victoria Worsham (Economics, Math) spent ten weeks building tools to understand characteristics of successful oil and gas licenses in the North Sea. The team used data-scraping, merging, and OCR method to create a dataset containing license information and work obligations, and they also produced ArcGIS visualizations of license and well locations. They had the chance to consult frequently with analytics professionals at ExxonMobil.

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Yueru Li (Math) and Jiacheng Fan (Economics, Finance) spent ten weeks investigating abnormal behavior by companies bidding for oil and gas rights in the Gulf of Mexico. Working with data provided by the Bureau of Ocean Energy Management and ExxonMobil, the team used outlier detection methods to automate the flagging of abnormal behavior, and then used statistical methods to examine various factors that might predict such behavior. They had the chance to consult frequently with analytics professionals at ExxonMobil.

 

Click here to read the Executive Summary

 

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh