Learning to Search More Deeply

Project Summary

Weiyao Wang (Math) and Jennifer Du , along with NCCU Physics majors Jarrett Weathersby and Samuel Watson, spent ten weeks learning about how search engines often provide results which are not representative in terms of race and/or gender. Working closely with entrepreneur Winston Henderson, their goal was to understand how to frame this problem via statistical and machine-learning methodology, as well as to explore potential solutions.

Themes and Categories
Year
2016

Project Results

In order to understand Google's algorithm, the team web-scraped search results and used machine-learning to understand the importance of each feature. They then performed sentiment analysis to quantify public opinions from Twitter and used community-based crawling and seeding to collect information relevant to minority groups.

Download the Executive Summary (PDF)

Faculty Sponsor

Project Manager

Participants

  • Jennifer Du, Duke University Computer Science
  • Weiyao Wang, Duke University Computer Science, Mathematics, and Political Science
  • Jarrett Weathersby, North Carolina Central University Physics
  • Samuel Watson, North Carolina Central University Physics

Disciplines Involved

  • Sociology
  • Anthropology
  • Economics
  • All quantitative STEM

Related People

Related Projects

The Air Force’s F-15E Strike Eagle jets have parts that wear down and break, causing unscheduled maintenance events that take away valuable time in the air for critical missions and training. Our team, Limitless Data, is working with Seymour Johnson Air Force Base to mine manually entered maintenance data to visualize and predict aircraft failures. We created a prototype data visualization product that will enable maintainers on the flight line and help them identify and repair critical failures before they happen, keeping jets ready to fly, fight and win.

 

Faculty Lead: Dr. Emma Rasiel

Client Lead: Lt. Devon Burger

Project Manger:  Vignesh Kumaresan

This project aims to improve the computational efficiency of signal operations, e.g., sampling and multiplying signals. We design machine learning-based signal processing modules that use an adaptive sampling strategy and interpolation to generate a good approximation of the exact output. While ensuring a low error level, improvements in computational efficiency can be expected for digital signal processing systems using the implemented self-adjusting modules.

Project Leads: Yi Feng, Vahid Tarokh

 

Click here to view the project team's poster

 

Watch the team's final presentation (on Zoom) here:

 

Mapping History has focused on the categorizing, labelling, digitization, and 3D reconstruction of 16th & 17th century maps & atlases of London and Lisbon. Over the course of the summer, the Mapping History team has developed its own unique analytical dataset by painstakingly labelling every element contained within these maps, used python to digitize this dataset, and, now in the projects final stage, has begun the process of reconstructing these historical perspectives in a 3D game engine.

Project Lead: Philip Stern, Ed Triplett

Project Manager: Sam Horewood

 

Watch the team's final presentation (on Zoom) below: