Exploring lemur olfactory communication via statistical analyses in R

Project Summary

Questions asked: Do males and females scent mark equally? Do lemurs scent mark equally in breeding and non-breeding seasons?

Themes and Categories
Paul Bendich

Graduate students: Lydia Greene and Kendra Smyth

Faculty instructor: Julie Teichroeb

Course: EVANTH 246: Sociobiology

Data set: The frequency of scent-marking behavior in the Coquerel’s sifaka

Dependent variable: scent-marking frequency

Potential explanatory variables: sex, season, age, group size, free ranging, amount of time observed, individual identity

  • Step 1: Visualizing data and testing for normalcy (histograms, dotcharts, box plots, Shapiro test)
  • Step 2: Choosing an appropriate distribution and test
  • Step 3: Applying the test in R (Wilcoxon tests and GLMMs)
  • Step 4: Interpreting results

Model <- glmmadmb(Scentmark ~ Sex + Season + Group.size + Age + FR + (1|Individual) + offset(log(Obs..Time)), data=data, family=”nbinom”, zeroInflation=TRUE)

Related Projects

A large and growing trove of patient, clinical, and organizational data is collected as a part of the “Help Desk” program at Durham’s Lincoln Community Health Center. Help Desk is a group of student volunteers who connect with patients over the phone and help them navigate to community resources (like food assistance programs, legal aid, or employment centers). Data-driven approaches to identifying service gaps, understanding the patient population, and uncovering unseen trends are important for improving patient health and advocating for the necessity of these resources. Disparities in food security, economic stability, education, neighborhood and physical environment, community and social context, and access to the healthcare system are crucial social determinants of health, which studies indicate account for nearly 70% of all health outcomes.

We led a 75-minute class session for the Marine Mammals course at the Duke University Marine Lab that introduced students to strengths and challenges of using aerial imagery to survey wildlife populations, and the growing use of machine learning to address these "big data" tasks.

Most phenomena that data scientists seek to analyze are either spatially or temporally correlated. Examples of spatial and temporal correlation include political elections, contaminant transfer, disease spread, housing market, and the weather. A question of interest is how to incorporate the spatial correlation information into modeling such phenomena.


In this project, we focus on the impact of environmental attributes (such as greenness, tree cover, temperature, etc.) along with other socio-demographics and home characteristics on housing prices by developing a model that takes into account the spatial autocorrelation of the response variable. To this aim, we introduce a test to diagnose spatial autocorrelation and explain how to integrate spatial autocorrelation into a regression model



In this data exploration, students are provided with data collected from remote sensing, census, and Zillow sources. Students are tasked with conducting a regression analysis of real-estate estimates against environmental amenities and other control variables which may or may not include the spatial autocorrelation information.