We show that the resulting compressed techniques are faster than their uncompressed variants, vastly reduce memory demands, and do not encompass any significant deterioration in performance. The proposed structured random projections for SNMF allow to deal with arbitrarily shaped large matrices, beyond the standard limit of tall-and-skinny matrices, granting access to very efficient computations in this general setting. We accompany the algorithmic presentation with theoretical foundations and numerous and diverse examples, showing the suitability of the proposed approaches.
See full figure and text (PDF).