Classification of Vascular Anomalies using Continuous Doppler Ultrasound and Machine Learning

Project Summary

Over ten weeks, BME and ECE majors Serge Assaad and Mark Chen joined forces with Mechanical Engineering Masters student Guangshen Ma to automate the diagnosis of vascular anomalies from Doppler Ultrasound data, with goals of improving diagnostic accuracy and reducing physician time spent on simple diagnoses. They worked closely with Duke Surgeon Dr. Leila Mureebe and Civil and Environmental Engineering Professor Wilkins Aquino.

Themes and Categories
Year
2017
Contact
Ashlee Valente
Duke Center for Applied Genomics & Precision Medicine
ashlee.valente@duke.edu

Project Results: Working with a Duke Hospital dataset of 5 Doppler ultrasound recordings taken from each of 38 patients, the team used machine-learning to predict whether or not a patient was healthy from the recordings. They extracted features from the recordings using a variety of tools from signal processing, visualized the separation of healthy and unhealthy patients in this feature space, and built a competitive classifier using standard supervised-learning tools. They had the opportunity to present their findings to Duke's Provost and to senior leadership within Duke Hospital and the Duke Clinical Research Institute.

Faculty Leads: Wilkins AquinoLeila Mureebe

Project Manager: Kyle Burris

Click here for the Executive Summary

"Participating in Data+ definitely changed my perception of Data Science research. It was more interdisciplinary than I expected, and the opportunity to work with experts across different fields (Medicine, Civil Engineering, Statistics) was a defining aspect of my Data+ experience." - Serge Assad, Biomedical Engineering, Electrical & Computer Engineering

"The project mentor was fantastic. The three students I worked with were superb. We were able to make great progress that will lead to journal publications and grant proposals." — Wilkins Aquino, Professor in the Department of Civil and Environmental Engineering. Pratt School of Engineering

Related People

Related Projects

Brooke Erikson (Economics/Computer Science), Alejandro Ortega (Math), and Jade Wu (Computer Science) spent ten weeks developing open-source tools for automatic document categorization, PDF table extraction, and data identification. Their motivating application was provided by Power for All’s Platform for Energy Access Knowledge, and they frequently collaborated with professionals from that organization.

Click here to read the Executive Summary

 

Jake Epstein (Statistics/Economics), Emre Kiziltug (Economics), and Alexander Rubin (Math/Computer Science) spent ten weeks investigating the existence of relative value opportunities in global corporate bond markets. They worked closely with a dataset provided by a leading asset management firm.

Click here for the Executive Summary

Maksym Kosachevskyy (Economics) and Jaehyun Yoo (Statistics/Economics) spent ten weeks understanding temporal patterns in the used construction machinery market and investigating the relationship between these patterns and macroeconomic trends.

They worked closely with a large dataset provided by MachineryTrader.com, and discussed their findings with analytics professionals from a leading asset management firm.

Click here to read the Executive Summary