A Bayesian Framework for Joint Analysis of Heterogeneous Neuroscience Data

Project Summary

A new model is developed for joint analysis of ordered, categorical, real and count data. In the motivating application, the ordered and categorical data are answers to questionnaires, the (word) count data correspond to the text questions from the questionnaires, and the real data correspond to fMRI responses for each subject. We also combine the analysis of these data with single-nucleotide polymorphism (SNP) data from each individual. 

Themes and Categories
Year
Contact
Esther Salazar
ECE Department
esther.salazar@duke.edu

The questionnaires considered here correspond to standard psychological surveys, and the study is motivated by psychology and neuroscience. The proposed Bayesian model infers sparse graphical models (networks) jointly across people, questions, fMRI stimuli and brain activity, integrated within a new matrix factorization based on latent binary features. We demonstrate how the learned model may take fMRI and SNP data from a subject as inputs, and predict (impute)how the individual would answer a psychological questionnaire; going in the other direction, we also use an individual's SNP data and answers from questionnaires to impute unobserved fMRI data. Each of these two imputation settings has practical and theoretical applications for understanding human behavior and mental health, which are discussed.

Related People

Related Projects

Sean Fiscus (Math/Econ/EnvEng), Alyssa Shi (Stats), Yamil Lopez-Ruiz (BME/CS), Emmanuel Mokel (Stats/Math) spent ten weeks working with data from CovIdentify, a study that focuses on using wearables to predict and diagnose COVID-19 and the Flu. The team improved the memory efficiency of analytic pipelines, and added capacity to ingest different types of data. This project built upon the work accomplished by the Duke Bass Connections team and the Duke MIDS capstone project.

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Jessilyn Dunn

Stats majors Alexandra Lawrence and Morgan Pruchniewski spent ten weeks exploring a dataset comprising 619 variables, including chemical and biological measurements, sourced from the Pivers Island Coastal Observatory (PICO). Using modern time-series analysis techniques, the team delivered key insights to PICO scientific staff, as well as advice for future data collection protocols.

 

View the team's project poster here

Watch the team's final presentation on Zoom:

 

Project Lead: Zackary Johnson

Marine mammals exhibit extreme physiological and behavioral adaptions that allow them to dive hundreds to thousands of meters underwater despite their need to breathe air at the surface. Through the development of new remote monitoring technologies, we are just beginning to understand the mechanisms by which they are able to execute these extreme behaviors. Long- term animal-borne tags can now record location, dive depth, and dive duration and then transmit these data to satellite receivers, enabling remote access to behavior occurring both many kilometers out to sea and several kilometers below the ocean surface.