A Bayesian Framework for Joint Analysis of Heterogeneous Neuroscience Data

Project Summary

A new model is developed for joint analysis of ordered, categorical, real and count data. In the motivating application, the ordered and categorical data are answers to questionnaires, the (word) count data correspond to the text questions from the questionnaires, and the real data correspond to fMRI responses for each subject. We also combine the analysis of these data with single-nucleotide polymorphism (SNP) data from each individual. 

Themes and Categories
Esther Salazar
ECE Department

The questionnaires considered here correspond to standard psychological surveys, and the study is motivated by psychology and neuroscience. The proposed Bayesian model infers sparse graphical models (networks) jointly across people, questions, fMRI stimuli and brain activity, integrated within a new matrix factorization based on latent binary features. We demonstrate how the learned model may take fMRI and SNP data from a subject as inputs, and predict (impute)how the individual would answer a psychological questionnaire; going in the other direction, we also use an individual's SNP data and answers from questionnaires to impute unobserved fMRI data. Each of these two imputation settings has practical and theoretical applications for understanding human behavior and mental health, which are discussed.

Related People

Related Projects

Exposure to local pathogens is a significant selective pressure on the human genome: the strongest selective forces identified in modern human populations are for mutations that confer increased resistance to malaria infection. Understanding how human genetic variation impacts susceptibility to pathogens can reveal important aspects of disease biology and reveal novel treatment targets. By using genome-wide association of infection-related cellular traits, we can connect human genetic variation to disease susceptibility in a controlled laboratory environment. Identification of the variants, genes, and cellular pathways involved in infectious disease pathogenesis can inform host-directed therapeutics, clinically effective risk stratification, and epidemiological prediction. This data expedition explores the effect of host genetic variation on chemokine response to Chlamydia infection.

The goal of this Data+ project is to apply and extend custom analytics solutions to understand and predict microbial population growth. An explosion of data has resulted from tracking the growth of bacteria in high throughput devices. These data were generated to understand how microbes grow. Better models that fit and predict these growth data are needed for better treatment of pathogenic bacterial infections, food safety, beer and bread fermentation, and understanding stress resilience of the microbiome. Using nonparametric statistical models to analyze how microbes grow under stress, the Schmid research lab at Duke has made important discoveries in these areas. These studies generated large data sets and developed statistical models to track and predict how microbes grow and change their gene expression when faced with extreme stress. We built a web application called phenom to make these models accessible to the broader community. In this Data+ project, students will beta test the web app and make improvements, including data visualization, extending the underlying statistical model, and analyzing data using the app.


Project Lead: Amy Schmid

Project Manager: Andrew. Soborowski

Image credit: Tonner, P.D., Darnell, C.L., Bushell, F.M.L., Lund, P.A., Schmid, A.K.*, Schmidler, S.C. 2020. A Bayesian non-parametric mixed-Effects model of microbial growth curves. PLoS Comp Biol. 16(10): e1008366. https://doi.org/10.1371/journal.pcbi.1008366

A team of students led by Biomedical Engineering professor Lingchong You will predict pattern formation of bacterial colonies by integrating experimental results with both mechanistic modelling and machine learning methods. Bacterial colonies have the capability to self-organize into beautiful and intricate patterns. Students will contribute to a method for controlling the outcome of colony spatial patterning, which is an important challenge facing the field of synthetic biology.


Project Lead: Lingchong You

Project Manager: Anita Silver