Approximate dynamic programming

Project Summary

Intelligent mobile sensor agent can adapt to heterogeneous environmental conditions, to achieve the optimal performance, such as demining, maneuvering target tracking. 

Themes and Categories
Year
Contact
Wenjie Lu
wenjie.lu@duke.edu

The mobile sensor agent is a robot with onboard sensors, and it is deployed to navigate obstacle-populated workspaces subject to sensing objectives. The expected performance of available future measurements is estimated using information theoretic metrics, and is optimized while minimizing the cost of operating the sensors, including distance. Approximate dynamic programming and non-parametric Bayesian models are studied in the heterogeneous system.

Related People

Related Projects

Producing oil and gas in the North Sea, off the coast of the United Kingdom, requires a lease to extract resources from beneath the ocean floor and companies bid for those rights. This team will consult with professionals at ExxonMobil to understand why these leases are acquired and who benefits. This requires historical data on bid history to investigate what leads to an increase in the number of (a) leases acquired and (b) companies participating in auctions. The goal of this team is to create a well-structured dataset based on company bid history from the U.K. Oil and Gas Authority; data which will come from many different file structures and formats (tabular, pdf, etc.). The team will curate these data to create a single, tabular database of U.K. bid history and work programs.

Project Lead: Kyle Bradbury

Project Manager: Artem Streltsov

Producing oil and gas in the Gulf of Mexico requires rights to extract these resources from beneath the ocean floor and companies bid into the market for those rights. The top bids are sometimes significantly larger than the next highest bids, but it’s not always clear why this differential exists and some companies seemingly overbid by large margins. This team will consult with professionals at ExxonMobil to curate and analyze historical bid data from the Bureau of Ocean Energy Management that contains information on company bid history, infrastructure, wells, and seismic survey data as well as data from the companies themselves and geopolitical events. The stretch goal of the team will be to see if they can uncover the rationale behind historic bidding patterns. What do the highest bidders know that other bidders do not (if anything)? What characteristics might incentivize overbidding to minimize the risk of losing the right to produce (i.e. ambiguity aversion)?

Project Lead: Kyle Bradbury

Project Manager: Hyeongyul Roh

A team of students led by researchers in the Energy Access Project will develop means to evaluate non-technical electricity losses (theft) in developing countries through machine learning techniques applied to smart meter electricity consumption data. Students will use data from smart meters installed at transformers and households through a randomized control trial. Students will develop algorithms that can be used to detect anomalies in the electricity consumption data and create a dataset of such indicators.  This project will provide researchers with new ways of incorporating electricity consumption data and applications for electricity utilities in developing country settings.

Faculty Lead: Robyn Meeks

Project Manager: Bernard Coles