Approximate dynamic programming

Project Summary

Intelligent mobile sensor agent can adapt to heterogeneous environmental conditions, to achieve the optimal performance, such as demining, maneuvering target tracking. 

Themes and Categories
Contact
Wenjie Lu
wenjie.lu@duke.edu

The mobile sensor agent is a robot with onboard sensors, and it is deployed to navigate obstacle-populated workspaces subject to sensing objectives. The expected performance of available future measurements is estimated using information theoretic metrics, and is optimized while minimizing the cost of operating the sensors, including distance. Approximate dynamic programming and non-parametric Bayesian models are studied in the heterogeneous system.

Related People

Related Projects

United Nations Sustainable Development Goal 7 calls for universal access to affordable, reliable, sustainable, and modern energy. Researchers and practitioners around the world have responded to this call by producing a wealth of energy access data. While many data gaps still exist, are we capturing the fullest potential from the information and research we do have, and what it tells us about how to accelerate energy access? Power for All’s Platform for Energy Access Knowledge (PEAK) is an interactive knowledge platform designed to automatically curate, organize, and streamline large, growing bodies of data into digestible, sharable, and useable knowledge through automated data capture, indexing, and visualization. A team of students led by Rebekah Shirley will consult with Power for All to creatively visualize PEAK’s library, and to explore machine learning and natural language processing tools that can enable auto-extraction and visualization of data for more effective science communication.

A team of students led by researchers in the Energy Data Analytics Lab and the Sustainable Energy Transitions Initiative will develop machine learning techniques for automatically mapping global electricity infrastructure using satellite imagery. By identifying substations, transmission lines, and distribution lines, students will create and publish a training dataset that we will use to automate grid infrastructure geolocation. These data and techniques will empower researchers and policymakers to better understand who has grid-connected access to electricity, who is underserved, and how to most efficiently transition communities and countries towards sustainable electrification.